Suppr超能文献

亲电醛 4-羟基-2-壬烯醛介导的信号转导与线粒体功能障碍。

Electrophilic Aldehyde 4-Hydroxy-2-Nonenal Mediated Signaling and Mitochondrial Dysfunction.

机构信息

Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71103, USA.

Department of Chemical & Biomolecular Engineering, University of Nebraska, Lincoln, NB 68588, USA.

出版信息

Biomolecules. 2022 Oct 25;12(11):1555. doi: 10.3390/biom12111555.

Abstract

Reactive oxygen species (ROS), a by-product of aerobic life, are highly reactive molecules with unpaired electrons. The excess of ROS leads to oxidative stress, instigating the peroxidation of polyunsaturated fatty acids (PUFA) in the lipid membrane through a free radical chain reaction and the formation of the most bioactive aldehyde, known as 4-hydroxynonenal (4-HNE). 4-HNE functions as a signaling molecule and toxic product and acts mainly by forming covalent adducts with nucleophilic functional groups in proteins, nucleic acids, and lipids. The mitochondria have been implicated as a site for 4-HNE generation and adduction. Several studies clarified how 4-HNE affects the mitochondria's functions, including bioenergetics, calcium homeostasis, and mitochondrial dynamics. Our research group has shown that 4-HNE activates mitochondria apoptosis-inducing factor (AIFM2) translocation and facilitates apoptosis in mice and human heart tissue during anti-cancer treatment. Recently, we demonstrated that a deficiency of 2 in the conditional-specific cardiac knockout mouse increases ROS, and subsequent production of 4-HNE inside mitochondria leads to the adduction of several mitochondrial respiratory chain complex proteins. Moreover, we highlighted the physiological functions of HNE and discussed their relevance in human pathophysiology and current discoveries concerning 4-HNE effects on mitochondria.

摘要

活性氧(ROS)是有氧生命的副产物,是具有不成对电子的高反应性分子。ROS 的过量会导致氧化应激,通过自由基链式反应引发脂质膜中多不饱和脂肪酸(PUFA)的过氧化,并形成最具生物活性的醛,即 4-羟基壬烯醛(4-HNE)。4-HNE 作为一种信号分子和毒性产物,主要通过与蛋白质、核酸和脂质中的亲核功能基团形成共价加合物而起作用。线粒体被认为是 4-HNE 产生和加合物形成的部位。一些研究阐明了 4-HNE 如何影响线粒体的功能,包括生物能量学、钙稳态和线粒体动力学。我们的研究小组已经表明,4-HNE 激活线粒体凋亡诱导因子(AIFM2)易位,并在癌症治疗期间促进小鼠和人心脏组织中的细胞凋亡。最近,我们证明了条件特异性心脏敲除小鼠中的 2 缺乏会增加 ROS,随后在线粒体内部产生的 4-HNE 导致几个线粒体呼吸链复合蛋白的加合物形成。此外,我们强调了 HNE 的生理功能,并讨论了它们与人类病理生理学的相关性,以及当前关于 4-HNE 对线粒体影响的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7761/9687674/d07ff41186a1/biomolecules-12-01555-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验