Suppr超能文献

评估深度学习轮廓勾画在多个放疗中心的有效性。

Evaluating the Effectiveness of Deep Learning Contouring across Multiple Radiotherapy Centres.

作者信息

Walker Zoe, Bartley Gary, Hague Christina, Kelly Daniel, Navarro Clara, Rogers Jane, South Christopher, Temple Simon, Whitehurst Philip, Chuter Robert

机构信息

Medical Physics, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry CV2 2DX, UK.

Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK.

出版信息

Phys Imaging Radiat Oncol. 2022 Nov 8;24:121-128. doi: 10.1016/j.phro.2022.11.003. eCollection 2022 Oct.

Abstract

BACKGROUND AND PURPOSE

Deep learning contouring (DLC) has the potential to decrease contouring time and variability of organ contours. This work evaluates the effectiveness of DLC for prostate and head and neck across four radiotherapy centres using a commercial system.

MATERIALS AND METHODS

Computed tomography scans of 123 prostate and 310 head and neck patients were evaluated. Besides one head and neck model, generic DLC models were used. Contouring time using centres' existing clinical methods and contour editing time after DLC were compared. Timing was evaluated using paired and non-paired studies. Commercial software or in-house scripts assessed dice similarity coefficient (DSC) and distance to agreement (DTA). One centre assessed head and neck inter-observer variability.

RESULTS

The mean contouring time saved for prostate structures using DLC compared to the existing clinical method was 5.9 ± 3.5 min. The best agreement was shown for the femoral heads (median DSC 0.92 ± 0.03, median DTA 1.5 ± 0.3 mm) and the worst for the rectum (median DSC 0.68 ± 0.04, median DTA 4.6 ± 0.6 mm). The mean contouring time saved for head and neck structures using DLC was 16.2 ± 8.6 min. For one centre there was no DLC time-saving compared to an atlas-based method. DLC contours reduced inter-observer variability compared to manual contours for the brainstem, left parotid gland and left submandibular gland.

CONCLUSIONS

Generic prostate and head and neck DLC models can provide time-savings which can be assessed with paired or non-paired studies to integrate with clinical workload. Reducing inter-observer variability potential has been shown.

摘要

背景与目的

深度学习轮廓勾画(DLC)有潜力减少器官轮廓勾画时间及轮廓的变异性。本研究使用商用系统评估了DLC在四个放疗中心对前列腺及头颈部的有效性。

材料与方法

对123例前列腺患者和310例头颈部患者的计算机断层扫描进行评估。除了一个头颈部模型外,还使用了通用的DLC模型。比较了使用各中心现有临床方法的轮廓勾画时间以及DLC后的轮廓编辑时间。通过配对和非配对研究评估时间。使用商业软件或内部脚本评估骰子相似系数(DSC)和一致性距离(DTA)。一个中心评估了头颈部观察者间的变异性。

结果

与现有临床方法相比,使用DLC为前列腺结构节省的平均轮廓勾画时间为5.9±3.5分钟。股骨头的一致性最佳(中位DSC 0.92±0.03,中位DTA 1.5±0.3毫米),直肠的一致性最差(中位DSC 0.68±0.04,中位DTA 4.6±0.6毫米)。使用DLC为头颈部结构节省的平均轮廓勾画时间为16.2±8.6分钟。对于一个中心,与基于图谱的方法相比,DLC没有节省时间。与手动勾画相比,DLC轮廓减少了脑干、左侧腮腺和左侧下颌下腺的观察者间变异性。

结论

通用的前列腺和头颈部DLC模型可以节省时间,可通过配对或非配对研究进行评估,以与临床工作量相结合。已显示出有降低观察者间变异性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e588/9668733/db33faf9fcdd/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验