Suppr超能文献

DICOM在皮肤病人工智能中的作用。

The Role of DICOM in Artificial Intelligence for Skin Disease.

作者信息

Caffery Liam J, Rotemberg Veronica, Weber Jochen, Soyer H Peter, Malvehy Josep, Clunie David

机构信息

Centre for Online, Centre for Health Services Research, The University of Queensland, Brisbane, QLD, Australia.

Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, QLD, Australia.

出版信息

Front Med (Lausanne). 2021 Feb 10;7:619787. doi: 10.3389/fmed.2020.619787. eCollection 2020.

Abstract

There is optimism that artificial intelligence (AI) will result in positive clinical outcomes, which is driving research and investment in the use of AI for skin disease. At present, AI for skin disease is embedded in research and development and not practiced widely in clinical dermatology. Clinical dermatology is also undergoing a technological transformation in terms of the development and adoption of standards that optimizes the quality use of imaging. Digital Imaging and Communications in Medicine (DICOM) is the international standard for medical imaging. DICOM is a continually evolving standard. There is considerable effort being invested in developing dermatology-specific extensions to the DICOM standard. The ability to encode relevant metadata and afford interoperability with the digital health ecosystem (e.g., image repositories, electronic medical records) has driven the initial impetus in the adoption of DICOM for dermatology. DICOM has a dedicated working group whose role is to develop a mechanism to support AI workflows and encode AI artifacts. DICOM can improve AI workflows by encoding derived objects (e.g., secondary images, visual explainability maps, AI algorithm output) and the efficient curation of multi-institutional datasets for machine learning training, testing, and validation. This can be achieved using DICOM mechanisms such as standardized image formats and metadata, metadata-based image retrieval, and de-identification protocols. DICOM can address several important technological and workflow challenges for the implementation of AI. However, many other technological, ethical, regulatory, medicolegal, and workforce barriers will need to be addressed before DICOM and AI can be used effectively in dermatology.

摘要

人们乐观地认为,人工智能(AI)将带来积极的临床结果,这推动了对将AI用于皮肤病研究和投资。目前,用于皮肤病的AI仍处于研发阶段,尚未在临床皮肤科广泛应用。临床皮肤科在成像质量优化标准的制定和采用方面也正在经历技术变革。医学数字成像和通信(DICOM)是医学成像的国际标准。DICOM是一个不断发展的标准。目前正在投入大量精力来开发DICOM标准的皮肤病学特定扩展。对相关元数据进行编码以及与数字健康生态系统(如图像存储库、电子病历)实现互操作性的能力,推动了DICOM在皮肤病学领域应用的最初动力。DICOM有一个专门的工作组,其职责是开发一种机制来支持AI工作流程并对AI工件进行编码。DICOM可以通过对派生对象(如二次图像、视觉可解释性映射、AI算法输出)进行编码以及对用于机器学习训练、测试和验证的多机构数据集进行高效管理,来改进AI工作流程。这可以使用DICOM机制来实现,如标准化图像格式和元数据、基于元数据图像检索和去识别协议。DICOM可以解决AI实施中的几个重要技术和工作流程挑战。然而,在DICOM和AI能够在皮肤病学中有效应用之前,还需要解决许多其他技术、伦理、监管、法医学和劳动力方面的障碍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae07/7902872/c5d590d26034/fmed-07-619787-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验