文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过 ROS 清除纳米颗粒的动脉粥样硬化易损斑块的靶向治疗及 MR/荧光双模式成像示踪。

Targeted Therapy of Atherosclerosis Vulnerable Plaque by ROS-Scavenging Nanoparticles and MR/Fluorescence Dual-Modality Imaging Tracing.

机构信息

School of Medical Imaging, Xuzhou Medical University, Xuzhou, 221004, People's Republic of China.

Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, People's Republic of China.

出版信息

Int J Nanomedicine. 2022 Nov 17;17:5413-5429. doi: 10.2147/IJN.S371873. eCollection 2022.


DOI:10.2147/IJN.S371873
PMID:36419720
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9677925/
Abstract

PURPOSE: Early diagnosis and treatment of atherosclerosis (AS) vulnerable plaque has important clinical significance for the prognosis of patients. In this work, the integrated diagnosis and treatment nanoparticles based on Gd-doped Prussian blue (GPB) were constructed for the fluorescence/MR dual-mode imaging and anti-ROS treatment of vulnerable AS plaques in vitro and in vivo. METHODS: To fabricate the theranostic NPs, GPB was modified with water-soluble polymer polyethyleneimine (PEI), fluorescence molecule rhodamine (Rd), and targeted molecule dextran sulfate (DS) step by step via electrostatic adsorption to construct GPRD NPs. The fluorescence/MR imaging ability and various nano-enzymes activity of GPRD NPs were detected, and the biocompatibility and safety of GPRD were also evaluated. Subsequently, RAW264.7 cells and ApoE -/- model mice were used to evaluate the effect of GPRD NPs on the targeted dual-mode imaging and anti-ROS treatment of vulnerable plaque in vitro and in vivo. RESULTS: The experimental results showed that our fabricated GPRD NPs not only displayed excellent MR/fluorescence dual-modality imaging of vulnerable plaque in vivo but also effectively utilized the nano-enzyme activity of GPB to inhibit the AS progress by ROS scavenging and the following reduction of inflammation, apoptosis, and foam cells' formation, providing a new avenue for the diagnosis and treatment of AS vulnerable plaque. CONCLUSION: The fabricated multimodal imaging nanoparticles with ROS-scavenging ability provided a new avenue for the diagnosis and treatment of AS vulnerable plaques.

摘要

目的:动脉粥样硬化(AS)易损斑块的早期诊断和治疗对患者的预后具有重要的临床意义。在这项工作中,构建了基于掺镝普鲁士蓝(GPB)的集成诊断和治疗纳米粒子,用于体外和体内易损 AS 斑块的荧光/MR 双模成像和抗 ROS 治疗。

方法:为了制备治疗性纳米粒子,GPB 通过静电吸附逐步用水溶性聚合物聚乙烯亚胺(PEI)、荧光分子罗丹明(Rd)和靶向分子硫酸葡聚糖(DS)进行修饰,以构建 GPRD 纳米粒子。检测了 GPRD 纳米粒子的荧光/MR 成像能力和各种纳米酶活性,并评价了 GPRD 的生物相容性和安全性。随后,使用 RAW264.7 细胞和 ApoE -/- 模型小鼠,评估 GPRD 纳米粒子对易损斑块的靶向双模式成像和体内外抗 ROS 治疗的效果。

结果:实验结果表明,我们制备的 GPRD 纳米粒子不仅显示了易损斑块在体内的优异 MR/荧光双模成像,而且还通过清除 ROS 有效利用了 GPB 的纳米酶活性,从而减少炎症、细胞凋亡和泡沫细胞的形成,抑制 AS 的进展,为 AS 易损斑块的诊断和治疗提供了新途径。

结论:具有 ROS 清除能力的构建的多模态成像纳米粒子为 AS 易损斑块的诊断和治疗提供了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/cec29782777c/IJN-17-5413-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/f6c372c457f2/IJN-17-5413-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/55d8928f7022/IJN-17-5413-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/f984f4d27c21/IJN-17-5413-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/acaff60751cc/IJN-17-5413-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/6cf1ed482d06/IJN-17-5413-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/940cadccf1ba/IJN-17-5413-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/cec29782777c/IJN-17-5413-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/f6c372c457f2/IJN-17-5413-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/55d8928f7022/IJN-17-5413-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/f984f4d27c21/IJN-17-5413-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/acaff60751cc/IJN-17-5413-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/6cf1ed482d06/IJN-17-5413-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/940cadccf1ba/IJN-17-5413-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a72b/9677925/cec29782777c/IJN-17-5413-g0007.jpg

相似文献

[1]
Targeted Therapy of Atherosclerosis Vulnerable Plaque by ROS-Scavenging Nanoparticles and MR/Fluorescence Dual-Modality Imaging Tracing.

Int J Nanomedicine. 2022

[2]
Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles.

Theranostics. 2021

[3]
CD40-targeting magnetic nanoparticles for MRI/optical dual-modality molecular imaging of vulnerable atherosclerotic plaques.

Atherosclerosis. 2023-3

[4]
Targeted Molecular Iron Oxide Contrast Agents for Imaging Atherosclerotic Plaque.

Nanotheranostics. 2020

[5]
In vivo MR and Fluorescence Dual-modality Imaging of Atherosclerosis Characteristics in Mice Using Profilin-1 Targeted Magnetic Nanoparticles.

Theranostics. 2016-1-1

[6]
Scavenger receptor-AI-targeted ultrasmall gold nanoclusters facilitate in vivo MR and ex vivo fluorescence dual-modality visualization of vulnerable atherosclerotic plaques.

Nanomedicine. 2019-4-25

[7]
Ultrasound/Optical Dual-Modality Imaging for Evaluation of Vulnerable Atherosclerotic Plaques with Osteopontin Targeted Nanoparticles.

Macromol Biosci. 2019-12-29

[8]
Reactive oxygen species-responsive nano-platform with dual-targeting and fluorescent lipid-specific imaging capabilities for the management of atherosclerotic plaques.

Acta Biomater. 2024-6

[9]
Multimodality Imaging of Angiogenesis in a Rabbit Atherosclerotic Model by GEBP11 Peptide Targeted Nanoparticles.

Theranostics. 2017-10-17

[10]
Dual-modality Imaging of Angiogenesis in Unstable Atherosclerotic Plaques with VEGFR2-Targeted Upconversion Nanoprobes in vivo.

Mol Imaging Biol. 2022-10

引用本文的文献

[1]
Pathophysiological Links Between Inflammatory Bowel Disease and Cardiovascular Disease: The Role of Dysbiosis and Emerging Biomarkers.

Biomedicines. 2025-7-31

[2]
Targeted and Biomimetic Nanoparticles for Atherosclerosis Therapy: A Review of Emerging Strategies.

Biomedicines. 2025-7-14

[3]
ROS-Responsive Cinnamaldehyde Polymer Nanoparticles Loaded with Puerarin for the Treatment of Atherosclerosis.

ACS Omega. 2025-6-5

[4]
The Role of ROS in Atherosclerosis and ROS-Based Nanotherapeutics for Atherosclerosis: Atherosclerotic Lesion Targeting, ROS Scavenging, and ROS-Responsive Activity.

ACS Omega. 2025-5-23

[5]
Enzyme-instructed self-assembled supramolecular bi-antibodies for inhibition and imaging of atherosclerosis progression.

Mater Today Bio. 2025-5-1

[6]
Spontaneous Induced Cascade Targeting Biomimetic Nanoparticles to Inhibit Dendritic Cell Maturation for Ameliorating Atherosclerosis and Magnetic Resonance Imaging.

Biomater Res. 2025-5-9

[7]
Application of Nanomaterials in Early Imaging and Advanced Treatment of Atherosclerosis.

Chem Biomed Imaging. 2025-1-21

[8]
Macrophage-based pathogenesis and theranostics of vulnerable plaques.

Theranostics. 2025-1-2

[9]
Novel imaging modalities for the identification of vulnerable plaques.

Front Cardiovasc Med. 2024-9-12

[10]
A non-invasive osteopontin-targeted phase changeable fluorescent nanoprobe for molecular imaging of myocardial fibrosis.

Nanoscale Adv. 2024-6-3

本文引用的文献

[1]
Prussian blue-based theranostics for ameliorating acute kidney injury.

J Nanobiotechnology. 2021-9-6

[2]
Prussian Blue Nanozymes Prevent Anthracycline-Induced Liver Injury by Attenuating Oxidative Stress and Regulating Inflammation.

ACS Appl Mater Interfaces. 2021-9-15

[3]
Cancer Cytomembrane-Cloaked Prussian Blue Nanoparticles Enhance the Efficacy of Mild-Temperature Photothermal Therapy by Disrupting Mitochondrial Functions of Cancer Cells.

ACS Appl Mater Interfaces. 2021-8-11

[4]
A treatment combined prussian blue nanoparticles with low-intensity pulsed ultrasound alleviates cartilage damage in knee osteoarthritis by initiating PI3K/Akt/mTOR pathway.

Am J Transl Res. 2021-5-15

[5]
Highly sensitive magnetic particle imaging of vulnerable atherosclerotic plaque with active myeloperoxidase-targeted nanoparticles.

Theranostics. 2021

[6]
Macrophage membrane functionalized biomimetic nanoparticles for targeted anti-atherosclerosis applications.

Theranostics. 2021

[7]
A biocompatible theranostic nanoplatform based on magnetic gadolinium-chelated polycyclodextrin: in vitro and in vivo studies.

Carbohydr Polym. 2021-2-15

[8]
Biosafety and biocompatibility assessment of Prussian blue nanoparticles and .

Nanomedicine (Lond). 2020-11

[9]
A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal Abilities that, Combined with Immunotherapy, Inhibits Metastasis and Recurrence.

ACS Nano. 2020-10-27

[10]
Lipids and Lipoproteins in 2020.

JAMA. 2020-8-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索