Suppr超能文献

基于读出分割回波平面成像(RS-EPI)扩散加权成像(DWI)的影像组学用于直肠癌患者预后风险分层:一项使用预测、预防和个性化医学框架的双中心机器学习研究

Radiomics based on readout-segmented echo-planar imaging (RS-EPI) diffusion-weighted imaging (DWI) for prognostic risk stratification of patients with rectal cancer: a two-centre, machine learning study using the framework of predictive, preventive, and personalized medicine.

作者信息

Liu Zonglin, Wang Yueming, Shen Fu, Zhang Zhiyuan, Gong Jing, Fu Caixia, Shen Changqing, Li Rong, Jing Guodong, Cai Sanjun, Zhang Zhen, Sun Yiqun, Tong Tong

机构信息

Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

出版信息

EPMA J. 2022 Nov 12;13(4):633-647. doi: 10.1007/s13167-022-00303-3. eCollection 2022 Dec.

Abstract

BACKGROUND

Currently, the rate of recurrence or metastasis (ROM) remains high in rectal cancer (RC) patients treated with the standard regimen. The potential of diffusion-weighted imaging (DWI) in predicting ROM risk has been reported, but the efficacy is insufficient.

AIMS

This study investigated the potential of a new sequence called readout-segmented echo-planar imaging (RS-EPI) DWI in predicting the ROM risk of patients with RC using machine learning methods to achieve the principle of predictive, preventive, and personalized medicine (PPPM) application in RC treatment.

METHODS

A total of 195 RC patients from two centres who directly received total mesorectal excision were retrospectively enrolled in our study. Machine learning methods, including recursive feature elimination (RFE), the synthetic minority oversampling technique (SMOTE), and the support vector machine (SVM) classifier, were used to construct models based on clinical-pathological factors (clinical model), radiomic features from RS-EPI DWI (radiomics model), and their combination (merged model). The Harrell concordance index (C-index) and the area under the time-dependent receiver operating characteristic curve (AUC) were calculated to evaluate the predictive performance at 1 year, 3 years, and 5 years. Kaplan‒Meier analysis was performed to evaluate the ability to stratify patients according to the risk of ROM.

FINDINGS

The merged model performed well in predicting tumour ROM in patients with RC at 1 year, 3 years, and 5 years in both cohorts (AUC = 0.887/0.813/0.794; 0.819/0.795/0.783) and was significantly superior to the clinical model (AUC = 0.87 [95% CI: 0.80-0.93] vs. 0.71 [95% CI: 0.59-0.81],  = 0.009; C-index = 0.83 [95% CI: 0.76-0.90] vs. 0.68 [95% CI: 0.56-0.79],  = 0.002). It also had a significant ability to differentiate patients with a high and low risk of ROM (HR = 12.189 [95% CI: 4.976-29.853],  < 0.001; HR = 6.427 [95% CI: 2.265-13.036],  = 0.002).

CONCLUSION

Our developed merged model based on RS-EPI DWI accurately predicted and effectively stratified patients with RC according to the ROM risk at an early stage with an individualized profile, which may be able to assist physicians in individualizing the treatment protocols and promote a meaningful paradigm shift in RC treatment from traditional reactive medicine to PPPM.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s13167-022-00303-3.

摘要

背景

目前,接受标准治疗方案的直肠癌(RC)患者的复发或转移率(ROM)仍然很高。已有报道扩散加权成像(DWI)在预测ROM风险方面的潜力,但效果并不理想。

目的

本研究使用机器学习方法,探讨一种名为读出分段回波平面成像(RS-EPI)DWI的新序列在预测RC患者ROM风险中的潜力,以实现预测、预防和个性化医疗(PPPM)原则在RC治疗中的应用。

方法

本研究回顾性纳入了来自两个中心的195例直接接受全直肠系膜切除术的RC患者。机器学习方法,包括递归特征消除(RFE)、合成少数过采样技术(SMOTE)和支持向量机(SVM)分类器,用于基于临床病理因素(临床模型)、RS-EPI DWI的影像组学特征(影像组学模型)及其组合(合并模型)构建模型。计算Harrell一致性指数(C指数)和时间依赖性受试者工作特征曲线下面积(AUC),以评估1年、3年和5年时的预测性能。进行Kaplan-Meier分析,以评估根据ROM风险对患者进行分层的能力。

结果

在两个队列中,合并模型在预测RC患者1年、3年和5年的肿瘤ROM方面均表现良好(AUC = 0.887/0.813/0.794;0.819/0.795/0.783),且显著优于临床模型(AUC = 0.87 [95% CI:0.80 - 0.93] vs. 0.71 [95% CI:0.59 - 0.81],P = 0.009;C指数 = 0.83 [95% CI:0.76 - 0.90] vs. 0.68 [95% CI:0.56 - 0.79],P = 0.002)。它还具有显著区分ROM高风险和低风险患者的能力(HR = 12.189 [95% CI:4.976 - 29.853],P < 0.001;HR = 6.427 [95% CI:2.265 - 13.036],P = 0.002)。

结论

我们开发的基于RS-EPI DWI的合并模型能够根据ROM风险在早期准确预测并有效分层RC患者,具有个性化特征,这可能有助于医生制定个性化治疗方案,并推动RC治疗从传统的反应性医疗向PPPM发生有意义的模式转变。

补充信息

在线版本包含可在10.1007/s13167-022-00303-3获取的补充材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56e8/9727035/721850584796/13167_2022_303_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验