Division of Biomedical Engineering, Hankuk University of Foreign Studies, Yongin-si, Gyeonggi-do, Republic of Korea.
Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Sci Rep. 2022 Dec 13;12(1):21510. doi: 10.1038/s41598-022-26161-7.
This study aimed to assess the performance of deep learning (DL) algorithms in the diagnosis of nasal bone fractures on radiographs and compare it with that of experienced radiologists. In this retrospective study, 6713 patients whose nasal radiographs were examined for suspected nasal bone fractures between January 2009 and October 2020 were assessed. Our dataset was randomly split into training (n = 4325), validation (n = 481), and internal test (n = 1250) sets; a separate external dataset (n = 102) was used. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of the DL algorithm and the two radiologists were compared. The AUCs of the DL algorithm for the internal and external test sets were 0.85 (95% CI, 0.83-0.86) and 0.86 (95% CI, 0.78-0.93), respectively, and those of the two radiologists for the external test set were 0.80 (95% CI, 0.73-0.87) and 0.75 (95% CI, 0.68-0.82). The DL algorithm therefore significantly exceeded radiologist 2 (P = 0.021) but did not significantly differ from radiologist 1 (P = 0.142). The sensitivity and specificity of the DL algorithm were 83.1% (95% CI, 71.2-93.2%) and 83.7% (95% CI, 69.8-93.0%), respectively. Our DL algorithm performs comparably to experienced radiologists in diagnosing nasal bone fractures on radiographs.
本研究旨在评估深度学习(DL)算法在诊断 X 光片上鼻骨骨折方面的表现,并将其与经验丰富的放射科医生进行比较。在这项回顾性研究中,评估了 2009 年 1 月至 2020 年 10 月期间因疑似鼻骨骨折而接受鼻骨 X 光检查的 6713 名患者。我们的数据集被随机分为训练集(n=4325)、验证集(n=481)和内部测试集(n=1250);还使用了一个独立的外部数据集(n=102)。比较了 DL 算法和两名放射科医生的受试者工作特征曲线(ROC)下面积(AUC)、敏感性和特异性。DL 算法在内部和外部测试集中的 AUC 分别为 0.85(95%CI,0.83-0.86)和 0.86(95%CI,0.78-0.93),而两名放射科医生在外部测试集中的 AUC 分别为 0.80(95%CI,0.73-0.87)和 0.75(95%CI,0.68-0.82)。因此,DL 算法显著优于放射科医生 2(P=0.021),但与放射科医生 1 无显著差异(P=0.142)。DL 算法的敏感性和特异性分别为 83.1%(95%CI,71.2-93.2%)和 83.7%(95%CI,69.8-93.0%)。我们的 DL 算法在诊断 X 光片上的鼻骨骨折方面表现与经验丰富的放射科医生相当。