Suppr超能文献

用于生物工程体外组织模型的电感受性聚己内酯-石墨烯支架的3D制造与表征

3D Fabrication and Characterisation of Electrically Receptive PCL-Graphene Scaffolds for Bioengineered In Vitro Tissue Models.

作者信息

McIvor Mary Josephine, Ó Maolmhuaidh Fionn, Meenagh Aidan, Hussain Shahzad, Bhattacharya Gourav, Fishlock Sam, Ward Joanna, McFerran Aoife, Acheson Jonathan G, Cahill Paul A, Forster Robert, McEneaney David J, Boyd Adrian R, Meenan Brian J

机构信息

Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, 2-24 York Street, Belfast BT15 1AP, UK.

The National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland.

出版信息

Materials (Basel). 2022 Dec 17;15(24):9030. doi: 10.3390/ma15249030.

Abstract

Polycaprolactone (PCL) is a well-established biomaterial, offering extensive mechanical attributes along with low cost, biocompatibility, and biodegradability; however, it lacks hydrophilicity, bioactivity, and electrical conductivity. Advances in 3D fabrication technologies allow for these sought-after attributes to be incorporated into the scaffolds during fabrication. In this study, solvent-free Fused Deposition Modelling was employed to fabricate 3D scaffolds from PCL with increasing amounts of graphene (G), in the concentrations of 0.75, 1.5, 3, and 6% (/). The PCL+G scaffolds created were characterised physico-chemically, electrically, and biologically. Raman spectroscopy demonstrated that the scaffold outer surface contained both PCL and G, with the G component relatively uniformly distributed. Water contact angle measurement demonstrated that as the amount of G in the scaffold increases (0.75-6% /), hydrophobicity decreases; mean contact angle for pure PCL was recorded as 107.22 ± 9.39°, and that with 6% G (PCL+6G) as 77.56 ± 6.75°. Electrochemical Impedance Spectroscopy demonstrated a marked increase in electroactivity potential with increasing G concentration. Cell viability results indicated that even the smallest addition of G (0.75%) resulted in a significant improvement in electroactivity potential and bioactivity compared with that for pure PCL, with 1.5 and 3% exhibiting the highest statistically significant increases in cell proliferation.

摘要

聚己内酯(PCL)是一种成熟的生物材料,具有广泛的机械性能,成本低、生物相容性好且可生物降解;然而,它缺乏亲水性、生物活性和导电性。3D制造技术的进步使得这些备受追捧的特性能够在制造过程中融入到支架中。在本研究中,采用无溶剂熔融沉积建模法,以聚己内酯为原料,添加浓度分别为0.75%、1.5%、3%和6%(/)的石墨烯(G),制备三维支架。对制备的聚己内酯+石墨烯支架进行了物理化学、电学和生物学表征。拉曼光谱表明,支架外表面同时含有聚己内酯和石墨烯,且石墨烯成分分布相对均匀。水接触角测量表明,随着支架中石墨烯含量的增加(0.75%-6%/),疏水性降低;纯聚己内酯的平均接触角记录为107.22±9.39°,含6%石墨烯的聚己内酯(PCL+6G)的平均接触角为77.56±6.75°。电化学阻抗谱表明,随着石墨烯浓度的增加,电活性电位显著增加。细胞活力结果表明,即使添加最少的石墨烯(0.75%),与纯聚己内酯相比,电活性电位和生物活性也有显著改善,1.5%和3%的石墨烯在细胞增殖方面表现出最高的统计学显著增加。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7960/9783119/e68c7f212376/materials-15-09030-g001.jpg

相似文献

2
In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2020 Sep;114:111056. doi: 10.1016/j.msec.2020.111056. Epub 2020 May 6.
3
Fabrication and Biological Activity of 3D-Printed Polycaprolactone/Magnesium Porous Scaffolds for Critical Size Bone Defect Repair.
ACS Biomater Sci Eng. 2020 Sep 14;6(9):5120-5131. doi: 10.1021/acsbiomaterials.9b01911. Epub 2020 Aug 3.
4
PCL/Graphene Scaffolds for the Osteogenesis Process.
Bioengineering (Basel). 2023 Feb 28;10(3):305. doi: 10.3390/bioengineering10030305.
6
Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:326-335. doi: 10.1016/j.msec.2017.05.003. Epub 2017 May 4.

引用本文的文献

1
Graphene Scaffolds: A Striking Approach to Combat Dermatophytosis.
Nanomaterials (Basel). 2023 Aug 10;13(16):2305. doi: 10.3390/nano13162305.

本文引用的文献

2
Effect of low-temperature plasma treatment of electrospun polycaprolactone fibrous scaffolds on calcium carbonate mineralisation.
RSC Adv. 2018 Nov 22;8(68):39106-39114. doi: 10.1039/c8ra07386d. eCollection 2018 Nov 16.
3
A guideline for 3D printing terminology in biomedical research utilizing ISO/ASTM standards.
3D Print Med. 2021 Mar 22;7(1):8. doi: 10.1186/s41205-021-00098-5.
4
Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines.
Pharmaceutics. 2021 Feb 1;13(2):191. doi: 10.3390/pharmaceutics13020191.
6
Advances in 3D bioprinting technology for cardiac tissue engineering and regeneration.
Bioact Mater. 2020 Nov 10;6(5):1388-1401. doi: 10.1016/j.bioactmat.2020.10.021. eCollection 2021 May.
9
Production of polycaprolactone nanoparticles with hydrodynamic diameters below 100 nm.
Eng Life Sci. 2019 Aug 12;19(10):658-665. doi: 10.1002/elsc.201800214. eCollection 2019 Oct.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验