Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, Netherlands.
Elife. 2022 Dec 23;11:e80935. doi: 10.7554/eLife.80935.
Expectations shape our experience of music. However, the internal model upon which listeners form melodic expectations is still debated. Do expectations stem from Gestalt-like principles or statistical learning? If the latter, does long-term experience play an important role, or are short-term regularities sufficient? And finally, what length of context informs contextual expectations? To answer these questions, we presented human listeners with diverse naturalistic compositions from Western classical music, while recording neural activity using MEG. We quantified note-level melodic surprise and uncertainty using various computational models of music, including a state-of-the-art transformer neural network. A time-resolved regression analysis revealed that neural activity over fronto-temporal sensors tracked melodic surprise particularly around 200ms and 300-500ms after note onset. This neural surprise response was dissociated from sensory-acoustic and adaptation effects. Neural surprise was best predicted by computational models that incorporated long-term statistical learning-rather than by simple, Gestalt-like principles. Yet, intriguingly, the surprise reflected primarily short-range musical contexts of less than ten notes. We present a full replication of our novel MEG results in an openly available EEG dataset. Together, these results elucidate the internal model that shapes melodic predictions during naturalistic music listening.
期望塑造了我们对音乐的体验。然而,听众形成旋律期望的内在模型仍存在争议。这些期望是源自格式塔原则还是统计学习?如果是后者,长期经验是否重要,或者短期规律是否足够?最后,多长的上下文信息可以影响上下文期望?为了回答这些问题,我们向人类听众展示了西方古典音乐中多样化的自然主义音乐作品,同时使用 MEG 记录神经活动。我们使用包括最先进的转换器神经网络在内的各种音乐计算模型来量化音符级别的旋律惊喜和不确定性。时间分辨回归分析显示,额颞传感器上的神经活动特别在音符起始后 200ms 和 300-500ms 左右跟踪旋律惊喜。这种神经惊喜反应与感觉-声学和适应效应分离。结合长期统计学习的计算模型(而不是简单的格式塔原则)可以很好地预测神经惊喜。然而,有趣的是,惊喜主要反映了不到十个音符的短程音乐上下文。我们在一个公开的 EEG 数据集中对我们的新型 MEG 结果进行了完整的复制。这些结果共同阐明了在自然主义音乐聆听中塑造旋律预测的内在模型。