Suppr超能文献

基于纳米多孔电化学免疫传感器的高灵敏度芬太尼检测

Highly Sensitive Fentanyl Detection Based on Nanoporous Electrochemical Immunosensors.

作者信息

Tokranova N, Cady N, Lampher A, Levitsky I A

机构信息

SUNY Polytechnic Institute, Albany NY 12203.

Emitech, Inc. Fall River, MA 02720.

出版信息

IEEE Sens J. 2022 Nov 1;22(21):20165-20170. doi: 10.1109/jsen.2022.3200591. Epub 2022 Aug 26.

Abstract

Rapid and accurate detection of fentanyl (highly potent opioid) is a critical importance due to current opioids crisis worldwide. We report the highly sensitive detection of fentanyl utilizing the synergetic effect of nanoporous silicon as a substrate with a high interfacial area and specific antibody functionalization of nanoporous silicon. The electrochemical sensor consists of gold working and counter electrodes deposited on nanoprous silicon, antibodies immobilized between these electrodes and an Ag/AgCl reference electrode. Square wave voltammetry was used as an electrochemical transduction method. The detection limit was determined as 6 ng/ml and 11.5 ng/ml for specific peak (fentanyl signature) in phosphate buffer and human sweat, respectively. A future goal of this study is to a wearable sweat sensor array for rapid and on-site detection of multiple opioids with analytical sensitivity comparable with laboratory tests.

摘要

由于当前全球阿片类药物危机,快速准确地检测芬太尼(高效阿片类药物)至关重要。我们报告了利用纳米多孔硅作为具有高界面面积的底物与纳米多孔硅的特异性抗体功能化的协同效应来高度灵敏地检测芬太尼。该电化学传感器由沉积在纳米多孔硅上的金工作电极和对电极、固定在这些电极之间的抗体以及Ag/AgCl参比电极组成。采用方波伏安法作为电化学转换方法。在磷酸盐缓冲液和人汗液中,特定峰(芬太尼特征峰)的检测限分别确定为6 ng/ml和11.5 ng/ml。本研究的一个未来目标是开发一种可穿戴汗液传感器阵列,用于快速现场检测多种阿片类药物,其分析灵敏度与实验室测试相当。

相似文献

本文引用的文献

3
Nicotine Monitoring with a Wearable Sweat Band.使用可穿戴式汗带进行尼古丁监测。
ACS Sens. 2020 Jun 26;5(6):1831-1837. doi: 10.1021/acssensors.0c00791. Epub 2020 May 28.
6
Wearable Sweat Band for Noninvasive Levodopa Monitoring.可穿戴汗液带用于非侵入性左旋多巴监测。
Nano Lett. 2019 Sep 11;19(9):6346-6351. doi: 10.1021/acs.nanolett.9b02478. Epub 2019 Aug 9.
9
Methylxanthine Drug Monitoring with Wearable Sweat Sensors.穿戴式汗液传感器的甲基黄嘌呤类药物监测。
Adv Mater. 2018 Jun;30(23):e1707442. doi: 10.1002/adma.201707442. Epub 2018 Apr 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验