Suppr超能文献

新型冠状病毒肺炎的流行病学参数:一项系统综述与荟萃分析

Epidemiologic Parameters for COVID-19: A Systematic Review and Meta-Analysis.

作者信息

Izadi Neda, Taherpour Niloufar, Mokhayeri Yaser, Sotoodeh Ghorbani Sahar, Rahmani Khaled, Hashemi Nazari Seyed Saeed

机构信息

Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

出版信息

Med J Islam Repub Iran. 2022 Dec 19;36:155. doi: 10.47176/mjiri.36.155. eCollection 2022.

Abstract

The World Health Organization (WHO) declared the coronavirus disease 2019 (COVID-19) outbreak to be a public health emergency and international concern and recognized it as a pandemic. This study aimed to estimate the epidemiologic parameters of the COVID-19 pandemic for clinical and epidemiological help. In this systematic review and meta-analysis study, 4 electronic databases, including Web of Science, PubMed, Scopus, and Google Scholar were searched for the literature published from early December 2019 up to 23 March 2020. After screening, we selected 76 articles based on epidemiological parameters, including basic reproduction number, serial interval, incubation period, doubling time, growth rate, case-fatality rate, and the onset of symptom to hospitalization as eligibility criteria. For the estimation of overall pooled epidemiologic parameters, fixed and random effect models with 95% CI were used based on the value of between-study heterogeneity (I2). A total of 76 observational studies were included in the analysis. The pooled estimate for R was 2.99 (95% CI, 2.71-3.27) for COVID-19. The overall R was 3.23, 1.19, 3.6, and 2.35 for China, Singapore, Iran, and Japan, respectively. The overall serial interval, doubling time, and incubation period were 4.45 (95% CI, 4.03-4.87), 4.14 (95% CI, 2.67-5.62), and 4.24 (95% CI, 3.03-5.44) days for COVID-19. In addition, the overall estimation for the growth rate and the case fatality rate for COVID-19 was 0.38% and 3.29%, respectively. The epidemiological characteristics of COVID-19 as an emerging disease may be revealed by computing the pooled estimate of the epidemiological parameters, opening the door for health policymakers to consider additional control measures.

摘要

世界卫生组织(WHO)宣布2019年冠状病毒病(COVID-19)疫情构成突发公共卫生事件并引起国际关注,且认定其为大流行病。本研究旨在估算COVID-19大流行的流行病学参数,以提供临床和流行病学方面的帮助。在这项系统评价和荟萃分析研究中,检索了4个电子数据库,包括Web of Science、PubMed、Scopus和谷歌学术,以查找2019年12月初至2020年3月23日发表的文献。筛选后,我们根据流行病学参数,包括基本再生数、传播间隔、潜伏期、倍增时间、增长率、病死率以及症状出现至住院时间,选择了76篇文章作为纳入标准。为了估算总体合并流行病学参数,根据研究间异质性(I²)的值,使用了95%置信区间的固定效应模型和随机效应模型。分析共纳入76项观察性研究。COVID-19的R的合并估计值为2.99(95%置信区间,2.71 - 3.27)。中国、新加坡、伊朗和日本的总体R分别为3.23、1.19、3.6和2.35。COVID-19的总体传播间隔、倍增时间和潜伏期分别为4.45天(95%置信区间,4.03 - 4.87)、4.14天(95%置信区间,2.67 - 5.62)和4.24天(95%置信区间,3.03 - 5.44)。此外,COVID-19的增长率和病死率的总体估计值分别为0.38%和3.29%。通过计算流行病学参数的合并估计值,可能揭示COVID-19作为一种新兴疾病的流行病学特征,为卫生政策制定者考虑额外的控制措施打开大门。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e165/9832936/9341672e4dce/mjiri-36-155-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验