Suppr超能文献

新型冠状病毒肺炎的传播间隔估计:一项系统评价与荟萃分析。

Estimates of serial interval for COVID-19: A systematic review and meta-analysis.

作者信息

Rai Balram, Shukla Anandi, Dwivedi Laxmi Kant

机构信息

Department of Mathematical Demography and Statistics, International Institute for Population Sciences, Mumbai, 400088, India.

出版信息

Clin Epidemiol Glob Health. 2021 Jan-Mar;9:157-161. doi: 10.1016/j.cegh.2020.08.007. Epub 2020 Aug 26.

Abstract

BACKGROUND

On 11 March 2020, the World Health Organization declared COVID-19 as Pandemic. The estimation of transmission dynamics in the initial days of the outbreak of any infectious disease is crucial to control its spread in a new area. The serial interval is one of the significant epidemiological measures that determine the spread of infectious disease. It is the time interval between the onset of symptoms in the primary and secondary case.

OBJECTIVE

The present study aimed at the qualitative and quantitative synthesis of the currently available evidence for the serial interval of COVID-19.

METHODOLOGY

Data on serial intervals were extracted from 11 studies following a systematic review. A meta-analysis was performed to estimate the pooled estimate of the serial interval. The heterogeneity and bias in the included studies were tested by various statistical measures and tests, including I statistic, Cochran's Q test, Egger's test, and Beggs's test.

RESULT

The pooled estimate for the serial interval was 5.40 (5.19, 5.61) and 5.19 (4.37, 6.02) days by the fixed and random effects model, respectively. The heterogeneity between the studies was found to be 89.9% by I statistic. There is no potential bias introduced in the meta-analysis due to small study effects.

CONCLUSION

The present review provides sufficient evidence for the estimate of serial interval of COVID-19, which can help in understanding the epidemiology and transmission of the disease. The information on serial interval can be useful in developing various policies regarding contact tracing and monitoring community transmission of COVID-19.

摘要

背景

2020年3月11日,世界卫生组织宣布新型冠状病毒肺炎为大流行病。对任何传染病爆发初期的传播动态进行评估对于控制其在新地区的传播至关重要。传播间隔是决定传染病传播的重要流行病学指标之一。它是指首例病例和续发病例症状出现之间的时间间隔。

目的

本研究旨在对目前关于新型冠状病毒肺炎传播间隔的现有证据进行定性和定量综合分析。

方法

通过系统综述从11项研究中提取传播间隔的数据。进行荟萃分析以估计传播间隔的合并估计值。采用包括I统计量、Cochran's Q检验、Egger检验和Beggs检验在内的各种统计方法和检验对纳入研究中的异质性和偏倚进行检测。

结果

固定效应模型和随机效应模型得出的传播间隔合并估计值分别为5.40(5.19,5.61)天和5.19(4.37,6.02)天。根据I统计量,研究之间的异质性为89.9%。荟萃分析中未因小规模研究效应而引入潜在偏倚。

结论

本综述为新型冠状病毒肺炎传播间隔的估计提供了充分证据,有助于了解该疾病的流行病学和传播情况。传播间隔信息对于制定有关接触者追踪和监测新型冠状病毒肺炎社区传播的各项政策可能有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0cb/7448781/56b6b8e5c70f/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验