Suppr超能文献

嵌入式抗菌肽:一种用于系统鉴定蛋白质组序列中嵌入式抗菌肽的多线程计算方法。

Embedded-AMP: A Multi-Thread Computational Method for the Systematic Identification of Antimicrobial Peptides Embedded in Proteome Sequences.

作者信息

Carballo Germán Meléndrez, Vázquez Karen Guerrero, García-González Luis A, Rio Gabriel Del, Brizuela Carlos A

机构信息

Computer Science Department, CICESE Research Center, Ensenada 22860, Mexico.

School of Mathematical & Statistical Sciences, University of Galway, H91 TK33 Galway, Ireland.

出版信息

Antibiotics (Basel). 2023 Jan 10;12(1):139. doi: 10.3390/antibiotics12010139.

Abstract

Antimicrobial peptides (AMPs) have gained the attention of the research community for being an alternative to conventional antimicrobials to fight antibiotic resistance and for displaying other pharmacologically relevant activities, such as cell penetration, autophagy induction, immunomodulation, among others. The identification of AMPs had been accomplished by combining computational and experimental approaches and have been mostly restricted to self-contained peptides despite accumulated evidence indicating AMPs may be found embedded within proteins, the functions of which are not necessarily associated with antimicrobials. To address this limitation, we propose a machine-learning (ML)-based pipeline to identify AMPs that are embedded in proteomes. Our method performs an in-silico digestion of every protein in the proteome to generate unique -mers of different lengths, computes a set of molecular descriptors for each -mer, and performs an antimicrobial activity prediction. To show the efficiency of the method we used the shrimp proteome, and the pipeline analyzed all -mers between 10 and 60 amino acids in length to predict all AMPs in less than 20 min. As an application example we predicted AMPs in different rodents (common cuy, common rat, and naked mole rat) with different reported longevities and found a relation between species longevity and the number of predicted AMPs. The analysis shows as the longevity of the species is higher, the number of predicted AMPs is also higher. The pipeline is available as a web service.

摘要

抗菌肽(AMPs)已引起研究界的关注,因为它们是对抗抗生素耐药性的传统抗菌药物的替代品,并且具有其他药理学相关活性,如细胞穿透、自噬诱导、免疫调节等。抗菌肽的鉴定是通过结合计算和实验方法完成的,并且大多局限于独立的肽段,尽管有越来越多的证据表明抗菌肽可能存在于蛋白质中,而这些蛋白质的功能不一定与抗菌作用相关。为了解决这一局限性,我们提出了一种基于机器学习(ML)的流程来鉴定蛋白质组中嵌入的抗菌肽。我们的方法对蛋白质组中的每个蛋白质进行虚拟消化,以生成不同长度的独特短肽,为每个短肽计算一组分子描述符,并进行抗菌活性预测。为了展示该方法的效率,我们使用了虾的蛋白质组,该流程分析了长度在10至60个氨基酸之间的所有短肽,在不到20分钟的时间内预测了所有抗菌肽。作为一个应用实例,我们预测了不同寿命的不同啮齿动物(普通豚鼠、普通大鼠和裸鼹鼠)中的抗菌肽,并发现物种寿命与预测的抗菌肽数量之间存在关联。分析表明,随着物种寿命的增加,预测的抗菌肽数量也会增加。该流程可作为网络服务使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/beb7/9854971/b2716e52586d/antibiotics-12-00139-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验