Suppr超能文献

试样几何形状对韧性水凝胶拉伸力学性能实验的影响

Specimen Geometry Effect on Experimental Tensile Mechanical Properties of Tough Hydrogels.

作者信息

Ji Donghwan, Im Pilseon, Shin Sunmi, Kim Jaeyun

机构信息

School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.

Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.

出版信息

Materials (Basel). 2023 Jan 13;16(2):785. doi: 10.3390/ma16020785.

Abstract

Synthetic tough hydrogels have received attention because they could mimic the mechanical properties of natural hydrogels, such as muscle, ligament, tendon, and cartilage. Many recent studies suggest various approaches to enhance the mechanical properties of tough hydrogels. However, directly comparing each hydrogel property in different reports is challenging because various testing specimen shapes/sizes were employed, affecting the experimental mechanical property values. This study demonstrates how the specimen geometry-the lengths and width of the reduced section-of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systemically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes with various lengths and widths of the reduced section. Unlike the rectangular specimen, which showed an inconsistent measurement of mechanical properties due to a local load concentration near the grip, dumbbell-shaped specimens exhibited a stable fracture at the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped tough hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of of numerous tough hydrogels for a fair comparison.

摘要

合成坚韧水凝胶受到关注,因为它们可以模拟天然水凝胶的力学性能,如肌肉、韧带、肌腱和软骨。最近的许多研究提出了各种增强坚韧水凝胶力学性能的方法。然而,在不同报告中直接比较每种水凝胶的性能具有挑战性,因为采用了各种测试样品形状/尺寸,这会影响实验力学性能值。本研究展示了坚韧双网络水凝胶的样品几何形状(即缩减部分的长度和宽度)如何导致实验拉伸力学值的差异。具体而言,使用11种不同形状和尺寸的样品进行拉伸测试,系统地比较了弹性模量,这些样品包括矩形、ASTM D412 - C和D412 - D、JIS K6251 - 7以及七种缩减部分长度和宽度各异的定制哑铃形状。与矩形样品不同,由于夹具附近存在局部载荷集中,矩形样品的力学性能测量结果不一致,而哑铃形样品在缩减部分表现出稳定的断裂。标距长度较短的哑铃形样品导致弹性模量较小。此外,还得出了样品尺寸与测量的弹性模量值之间的关系,这使得能够预测不同尺寸哑铃形坚韧水凝胶的实验弹性模量。本研究传达了一个信息,即提醒人们样品几何形状对应力 - 应变测量存在明显的实验依赖性,以及为了进行公平比较需要对众多坚韧水凝胶的测量进行标准化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2687/9866837/dc5ad4699831/materials-16-00785-g001.jpg

相似文献

1
Specimen Geometry Effect on Experimental Tensile Mechanical Properties of Tough Hydrogels.
Materials (Basel). 2023 Jan 13;16(2):785. doi: 10.3390/ma16020785.
3
Effect of Different Standard Geometry Shapes on the Tensile Properties of 3D-Printed Polymer.
Polymers (Basel). 2023 Jul 13;15(14):3029. doi: 10.3390/polym15143029.
4
Tough Hydrogels for Load-Bearing Applications.
Adv Sci (Weinh). 2024 Mar;11(12):e2307404. doi: 10.1002/advs.202307404. Epub 2024 Jan 15.
5
Bone-Adhesive Anisotropic Tough Hydrogel Mimicking Tendon Enthesis.
Adv Mater. 2023 Jan;35(3):e2206207. doi: 10.1002/adma.202206207. Epub 2022 Dec 14.
6
A comparative study of the mechanical properties of hybrid double-network hydrogels in swollen and as-prepared states.
J Mater Chem B. 2016 Sep 21;4(35):5814-5824. doi: 10.1039/c6tb01511e. Epub 2016 Aug 18.
7
Effect of specimen geometry on tensile strength of cortical bone.
J Biomed Mater Res A. 2010 Nov;95(2):580-7. doi: 10.1002/jbm.a.32837.
8
Strong and tough nanofibrous hydrogel composites based on biomimetic principles.
Mater Sci Eng C Mater Biol Appl. 2017 Mar 1;72:220-227. doi: 10.1016/j.msec.2016.11.025. Epub 2016 Nov 14.
9
Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate.
Carbohydr Polym. 2021 Apr 1;257:117627. doi: 10.1016/j.carbpol.2021.117627. Epub 2021 Jan 10.
10
Tough all-polysaccharide hydrogels with uniaxially/planarly oriented structure.
Carbohydr Polym. 2022 Jul 15;288:119376. doi: 10.1016/j.carbpol.2022.119376. Epub 2022 Mar 19.

引用本文的文献

2
Enhancing antioxidant delivery through 3D printing: a pathway to advanced therapeutic strategies.
Front Bioeng Biotechnol. 2023 Oct 4;11:1256361. doi: 10.3389/fbioe.2023.1256361. eCollection 2023.

本文引用的文献

1
Anti-Swelling, Robust, and Adhesive Extracellular Matrix-Mimicking Hydrogel Used as Intraoral Dressing.
Adv Mater. 2022 May;34(20):e2200115. doi: 10.1002/adma.202200115. Epub 2022 Apr 14.
2
Anisotropic Hydrogels with a Multiscale Hierarchical Structure Exhibiting High Strength and Toughness for Mimicking Tendons.
ACS Appl Mater Interfaces. 2022 Jan 26;14(3):4479-4489. doi: 10.1021/acsami.1c18989. Epub 2021 Dec 31.
3
Selected Phase Separation Renders High Strength and Toughness to Polyacrylamide/Alginate Hydrogels with Large-Scale Cross-Linking Zones.
ACS Appl Mater Interfaces. 2021 Jun 2;13(21):25383-25391. doi: 10.1021/acsami.1c04577. Epub 2021 May 20.
4
Cartilage-inspired, lipid-based boundary-lubricated hydrogels.
Science. 2020 Oct 16;370(6514):335-338. doi: 10.1126/science.aay8276.
5
A high-strength double network polydopamine nanocomposite hydrogel for adhesion under seawater.
J Mater Chem B. 2020 Sep 23;8(36):8232-8241. doi: 10.1039/d0tb00513d.
6
Towards brain-tissue-like biomaterials.
Nat Commun. 2020 Jul 9;11(1):3423. doi: 10.1038/s41467-020-17245-x.
8
Stiff, strong, and tough hydrogels with good chemical stability.
J Mater Chem B. 2014 Oct 21;2(39):6708-6713. doi: 10.1039/c4tb01194e. Epub 2014 Sep 9.
9
Mesoscale bicontinuous networks in self-healing hydrogels delay fatigue fracture.
Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):7606-7612. doi: 10.1073/pnas.2000189117. Epub 2020 Mar 24.
10
Highly Elastic and Ultratough Hybrid Ionic-Covalent Hydrogels with Tunable Structures and Mechanics.
Adv Mater. 2018 May;30(18):e1707071. doi: 10.1002/adma.201707071. Epub 2018 Mar 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验