Biomedical Engineering Program, Middle East Technical University, Ankara 06800, Turkey.
Department of Biomedical Engineering, Isparta University of Applied Science, Isparta 32260, Turkey.
ACS Biomater Sci Eng. 2023 Feb 13;9(2):693-704. doi: 10.1021/acsbiomaterials.2c01072. Epub 2023 Jan 24.
Poor osseointegration and infection are among the major challenges of 316L stainless steel (SS) implants in orthopedic applications. Surface modifications to obtain a nanostructured topography seem to be a promising method to enhance cellular interactions of 316L SS implants. In this study, arrays of nanodimples (NDs) having controlled feature sizes between 25 and 250 nm were obtained on 316L SS surfaces by anodic oxidation (anodization). Results demonstrated that the fabrication of NDs increased the surface area and, at the same time, altered the surface chemistry of 316L SS to provide chromium oxide- and hydroxide-rich surface oxide layers. In vitro experiments showed that ND surfaces promoted up to a 68% higher osteoblast viability on the fifth day of culture. Immunofluorescence images confirmed a well-spread cytoskeleton organization on the ND surfaces. In addition, higher alkaline phosphate activity and calcium mineral synthesis were observed on the ND surfaces compared to non-anodized 316L SS. Furthermore, a 71% reduction in () and a 58% reduction in () colonies were observed on the ND surfaces having a 200 nm feature size compared to non-anodized surfaces at 24 h of culture. Cumulatively, the results showed that a ND surface topography fabricated on 316L SS via anodization upregulated the osteoblast viability and functions while preventing and biofilm synthesis.
在骨科应用中,316L 不锈钢(SS)植入物的骨整合不良和感染是主要挑战之一。对表面进行改性以获得纳米结构形貌似乎是一种增强 316L SS 植入物细胞相互作用的有前途的方法。在这项研究中,通过阳极氧化(阳极氧化)在 316L SS 表面上获得了具有 25 至 250nm 之间受控特征尺寸的纳米凹坑(ND)阵列。结果表明,ND 的制造增加了表面积,同时改变了 316L SS 的表面化学性质,以提供富含氧化铬和氢氧化物的表面氧化层。体外实验表明,ND 表面可将培养第 5 天的成骨细胞活力提高高达 68%。免疫荧光图像证实 ND 表面上的细胞骨架组织良好。此外,与非阳极氧化的 316L SS 相比,ND 表面上观察到更高的碱性磷酸酶活性和钙矿合成。此外,与非阳极氧化表面相比,在培养 24 小时时,具有 200nm 特征尺寸的 ND 表面上的 () 和 () 集落减少了 71%和 58%。总之,结果表明,通过阳极氧化在 316L SS 上制造的 ND 表面形貌可上调成骨细胞活力和功能,同时防止 和 生物膜合成。