文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肢体负重增强了肢体缺失康复过程中增强现实和物理现实任务之间的技能转移。

Limb loading enhances skill transfer between augmented and physical reality tasks during limb loss rehabilitation.

机构信息

Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, USA.

Department of Electrical and Computer Engineering, Tufts University, Medford, USA.

出版信息

J Neuroeng Rehabil. 2023 Jan 27;20(1):16. doi: 10.1186/s12984-023-01136-5.


DOI:10.1186/s12984-023-01136-5
PMID:36707817
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9881335/
Abstract

BACKGROUND: Virtual and augmented reality (AR) have become popular modalities for training myoelectric prosthesis control with upper-limb amputees. While some systems have shown moderate success, it is unclear how well the complex motor skills learned in an AR simulation transfer to completing the same tasks in physical reality. Limb loading is a possible dimension of motor skill execution that is absent in current AR solutions that may help to increase skill transfer between the virtual and physical domains. METHODS: We implemented an immersive AR environment where individuals could operate a myoelectric virtual prosthesis to accomplish a variety of object relocation manipulations. Intact limb participants were separated into three groups, the load control (CG; [Formula: see text]), the AR control (CG; [Formula: see text]), and the experimental group (EG; [Formula: see text]). Both the CG and EG completed a 5-session prosthesis training protocol in AR while the CG performed simple muscle training. The EG attempted manipulations in AR while undergoing limb loading. The CG attempted the same manipulations without loading. All participants performed the same manipulations in physical reality while operating a real prosthesis pre- and post-training. The main outcome measure was the change in the number of manipulations completed during the physical reality assessments (i.e. completion rate). Secondary outcomes included movement kinematics and visuomotor behavior. RESULTS: The EG experienced a greater increase in completion rate post-training than both the CG and CG. This performance increase was accompanied by a shorter motor learning phase, the EG's performance saturating in less sessions of AR training than the CG. CONCLUSION: The results demonstrated that limb loading plays an important role in transferring complex motor skills learned in virtual spaces to their physical reality analogs. While participants who did not receive limb loading were able to receive some functional benefit from AR training, participants who received the loading experienced a greater positive change in motor performance with their performance saturating in fewer training sessions.

摘要

背景:虚拟现实和增强现实 (AR) 已成为上肢截肢者进行肌电假肢控制训练的流行方式。虽然有些系统已经取得了一定的成功,但尚不清楚在 AR 模拟中学习到的复杂运动技能在物理现实中完成相同任务的效果如何。肢体加载是运动技能执行的一个可能维度,而当前的 AR 解决方案中缺乏这一维度,这可能有助于增加虚拟和物理领域之间的技能转移。

方法:我们实现了一个沉浸式 AR 环境,个体可以在其中操作肌电虚拟假肢来完成各种物体重新定位操作。完整肢体的参与者被分为三组,即负载控制组(CG;[公式:见正文])、AR 控制组(CG;[公式:见正文])和实验组(EG;[公式:见正文])。CG 和 EG 都在 AR 中完成了 5 次假肢训练课程,而 CG 则进行了简单的肌肉训练。EG 在 AR 中进行操作时承受肢体加载,而 CG 在没有加载的情况下进行相同的操作。所有参与者在进行物理现实评估时(即完成率)都使用真实假肢进行训练前后的相同操作。主要结果测量是物理现实评估中完成的操作数量的变化(即完成率)。次要结果包括运动运动学和视觉运动行为。

结果:与 CG 和 CG 相比,EG 在训练后完成率的提高幅度更大。这种性能提高伴随着较短的运动学习阶段,EG 的性能在 AR 训练的会话数少于 CG 时就达到饱和。

结论:结果表明,肢体加载在将虚拟空间中学习到的复杂运动技能转移到其物理现实模拟中起着重要作用。虽然没有接受肢体加载的参与者能够从 AR 训练中获得一些功能益处,但接受加载的参与者在运动表现方面经历了更大的积极变化,并且在更少的训练课程中达到饱和。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/83db61cc11e0/12984_2023_1136_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/86de5dcdf779/12984_2023_1136_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/16547d8ea8e1/12984_2023_1136_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/341abfcd4a0c/12984_2023_1136_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/e935e9055a13/12984_2023_1136_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/0beee6cf33bf/12984_2023_1136_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/d275149e2000/12984_2023_1136_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/3b567f531be6/12984_2023_1136_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/0d5ae9d9b00a/12984_2023_1136_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/931ba6472e5b/12984_2023_1136_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/83db61cc11e0/12984_2023_1136_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/86de5dcdf779/12984_2023_1136_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/16547d8ea8e1/12984_2023_1136_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/341abfcd4a0c/12984_2023_1136_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/e935e9055a13/12984_2023_1136_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/0beee6cf33bf/12984_2023_1136_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/d275149e2000/12984_2023_1136_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/3b567f531be6/12984_2023_1136_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/0d5ae9d9b00a/12984_2023_1136_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/931ba6472e5b/12984_2023_1136_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c87/9881335/83db61cc11e0/12984_2023_1136_Fig10_HTML.jpg

相似文献

[1]
Limb loading enhances skill transfer between augmented and physical reality tasks during limb loss rehabilitation.

J Neuroeng Rehabil. 2023-1-27

[2]
Immersive augmented reality system for the training of pattern classification control with a myoelectric prosthesis.

J Neuroeng Rehabil. 2021-2-4

[3]
Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads.

Surg Endosc. 2017-6-20

[4]
Skill assessment in upper limb myoelectric prosthesis users: Validation of a clinically feasible method for characterising upper limb temporal and amplitude variability during the performance of functional tasks.

Med Eng Phys. 2017-7-3

[5]
Can an Augmented Reality Headset Improve Accuracy of Acetabular Cup Orientation in Simulated THA? A Randomized Trial.

Clin Orthop Relat Res. 2019-5

[6]
Individualized Augmented Reality Training Reduces Phantom Pain and Cortical Reorganization in Amputees: A Proof of Concept Study.

J Pain. 2020

[7]
The effects of virtual reality-based bilateral arm training on hemiplegic children's upper limb motor skills.

NeuroRehabilitation. 2016

[8]
Upbeat: Augmented Reality-Guided Dancing for Prosthetic Rehabilitation of Upper Limb Amputees.

J Healthc Eng. 2019-3-19

[9]
Development of Ophthalmic Microsurgery Training in Augmented Reality.

Klin Monbl Augenheilkd. 2020-4

[10]
Using mixed methods to evaluate efficacy and user expectations of a virtual reality-based training system for upper-limb recovery in patients after stroke: a study protocol for a randomised controlled trial.

Trials. 2014-9-6

引用本文的文献

[1]
Emerging Applications of Augmented and Mixed Reality Technologies in Motor Rehabilitation: A Scoping Review.

Sensors (Basel). 2025-3-25

[2]
A Review on the Usability, Flexibility, Affinity, and Affordability of Virtual Technology for Rehabilitation Training of Upper Limb Amputees.

Bioengineering (Basel). 2023-11-9

[3]
Virtual and augmented reality in biomedical engineering.

Biomed Eng Online. 2023-7-31

本文引用的文献

[1]
Just noticeable differences for elbow joint torque feedback.

Sci Rep. 2021-12-7

[2]
Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors.

Sci Robot. 2021-9-8

[3]
A new approach of inducing proprioceptive illusion by transcutaneous electrical stimulation.

J Neuroeng Rehabil. 2021-5-3

[4]
Myoelectric prosthesis users and non-disabled individuals wearing a simulated prosthesis exhibit similar compensatory movement strategies.

J Neuroeng Rehabil. 2021-5-1

[5]
Immersive augmented reality system for the training of pattern classification control with a myoelectric prosthesis.

J Neuroeng Rehabil. 2021-2-4

[6]
Dexterity, activity performance, disability, quality of life, and independence in upper limb Veteran prosthesis users: a normative study.

Disabil Rehabil. 2022-6

[7]
Understanding Limb Position and External Load Effects on Real-Time Pattern Recognition Control in Amputees.

IEEE Trans Neural Syst Rehabil Eng. 2020-7

[8]
Out of the Clinic, into the Home: The in-Home Use of Phantom Motor Execution Aided by Machine Learning and Augmented Reality for the Treatment of Phantom Limb Pain.

J Pain Res. 2020-1-21

[9]
Gaze and Movement Assessment (GaMA): Inter-site validation of a visuomotor upper limb functional protocol.

PLoS One. 2019-12-30

[10]
Capacity Assessment of Prosthetic Performance for the Upper Limb (CAPPFUL): Characterization of Normative Kinematics and Performance.

PM R. 2020-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索