Ueda Daiju, Yamamoto Akira, Ehara Shoichi, Iwata Shinichi, Abo Koji, Walston Shannon L, Matsumoto Toshimasa, Shimazaki Akitoshi, Yoshiyama Minoru, Miki Yukio
Department of Diagnostic and Interventional Radiology, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-machi, Abeno-ku, Osaka 545-8585, Japan.
Eur Heart J Digit Health. 2021 Dec 7;3(1):20-28. doi: 10.1093/ehjdh/ztab102. eCollection 2022 Mar.
We aimed to develop models to detect aortic stenosis (AS) from chest radiographs-one of the most basic imaging tests-with artificial intelligence.
We used 10 433 retrospectively collected digital chest radiographs from 5638 patients to train, validate, and test three deep learning models. Chest radiographs were collected from patients who had also undergone echocardiography at a single institution between July 2016 and May 2019. These were labelled from the corresponding echocardiography assessments as AS-positive or AS-negative. The radiographs were separated on a patient basis into training [8327 images from 4512 patients, mean age 65 ± (standard deviation) 15 years], validation (1041 images from 563 patients, mean age 65 ± 14 years), and test (1065 images from 563 patients, mean age 65 ± 14 years) datasets. The soft voting-based ensemble of the three developed models had the best overall performance for predicting AS with an area under the receiver operating characteristic curve, sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of 0.83 (95% confidence interval 0.77-0.88), 0.78 (0.67-0.86), 0.71 (0.68-0.73), 0.71 (0.68-0.74), 0.18 (0.14-0.23), and 0.97 (0.96-0.98), respectively, in the validation dataset and 0.83 (0.78-0.88), 0.83 (0.74-0.90), 0.69 (0.66-0.72), 0.71 (0.68-0.73), 0.23 (0.19-0.28), and 0.97 (0.96-0.98), respectively, in the test dataset.
Deep learning models using chest radiographs have the potential to differentiate between radiographs of patients with and without AS.
We created artificial intelligence (AI) models using deep learning to identify aortic stenosis (AS) from chest radiographs. Three AI models were developed and evaluated with 10 433 retrospectively collected radiographs and labelled from echocardiography reports. The ensemble AI model could detect AS in a test dataset with an area under the receiver operating characteristic curve of 0.83 (95% confidence interval 0.78-0.88). Since chest radiography is a cost-effective and widely available imaging test, our model can provide an additive resource for the detection of AS.
我们旨在开发利用人工智能从胸部X光片(最基本的影像检查之一)中检测主动脉瓣狭窄(AS)的模型。
我们使用从5638例患者中回顾性收集的10433张数字化胸部X光片来训练、验证和测试三种深度学习模型。胸部X光片收集自2016年7月至2019年5月期间在同一机构还接受过超声心动图检查的患者。根据相应的超声心动图评估将这些片子标记为AS阳性或AS阴性。这些X光片按患者进行划分,形成训练数据集(来自4512例患者的8327张图像,平均年龄65±15岁)、验证数据集(来自563例患者的1041张图像,平均年龄65±14岁)和测试数据集(来自563例患者的1065张图像,平均年龄65±14岁)。所开发的三种模型基于软投票的集成在预测AS方面具有最佳的总体性能,在验证数据集中,受试者工作特征曲线下面积、灵敏度、特异度、准确度、阳性预测值和阴性预测值分别为0.83(95%置信区间0.77 - 0.88)、0.78(0.67 - 0.86)、0.71(0.68 - 0.73)、0.71(0.68 - 0.74)、0.18(0.14 - 0.23)和0.97(0.96 - 0.98);在测试数据集中分别为0.83(0.78 - 0.88)、0.83(0.74 - 0.90)、0.69(0.66 - 0.72)、0.71(0.68 - 0.73)、0.23(0.19 - 0.28)和0.97(0.96 - 0.98)。
使用胸部X光片的深度学习模型有潜力区分有和没有AS的患者的X光片。
我们利用深度学习创建了人工智能(AI)模型,以从胸部X光片中识别主动脉瓣狭窄(AS)。开发并评估了三种AI模型,使用了10433张回顾性收集的X光片,并根据超声心动图报告进行标记。集成AI模型在测试数据集中检测AS的受试者工作特征曲线下面积为0.83(95%置信区间0.78 - 0.88)。由于胸部X光检查是一种经济高效且广泛可用的影像检查,我们的模型可为AS的检测提供额外资源。