Suppr超能文献

部分递归诱导结构调节(PRISM)建模子宫内膜癌生存中的种族差异。

Partially Recursively Induced Structured Moderation (PRISM) for modeling racial differences in endometrial cancer survival.

机构信息

Department of Public Health Sciences, University of Miami, Miami, Florida, United States of America.

Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America.

出版信息

PLoS One. 2023 Jan 31;18(1):e0268221. doi: 10.1371/journal.pone.0268221. eCollection 2023.

Abstract

PURPOSE

Health disparities are driven by a complex interplay of determinants operating across multiple levels of influence. However, while recognized conceptually, much disparities research fails to capture this inherent complexity in study focus and/or design; little of such work accounts for the interplay across the multiple levels of influence from structural (contextual) to biological or clinical. We developed a novel modeling framework that addresses these challenges and provides new insights.

METHODS

We used data from the Florida Cancer Data System on endometrial cancer patients and geocoded-derived social determinants of health to demonstrate the applicability of a new modeling paradigm we term PRISM regression. PRISM is a new highly interpretable tree-based modeling framework that allows for automatic discovery of potentially non-linear hierarchical interactions between health determinants at multiple levels and differences in survival outcomes between groups of interest, including through a new specific area-level disparity estimate (SPADE) incorporating these multilevel influences.

RESULTS

PRISM demonstrates that hierarchical influences on racial disparity in endometrial cancer survival appear to be statistically relevant and that these better predict survival differences than only using individual level determinants. The interpretability of the models allows more careful inspection of the nature of these hierarchical effects on disparity. Additionally, SPADE estimates show distinct geographical patterns across census tracts in Florida.

CONCLUSION

PRISM can provide a powerful new modeling framework with which to better understand racial disparities in cancer survival.

摘要

目的

健康差异是由多个影响层次上的多种决定因素复杂相互作用驱动的。然而,尽管在概念上得到了认可,但许多差异研究未能在研究重点和/或设计中捕捉到这种内在的复杂性;很少有此类工作考虑到从结构(背景)到生物或临床的多个影响层次的相互作用。我们开发了一种新颖的建模框架,解决了这些挑战并提供了新的见解。

方法

我们使用来自佛罗里达州癌症数据系统的子宫内膜癌患者数据和地理编码的健康社会决定因素,展示了我们称之为 PRISM 回归的新建模范例的适用性。PRISM 是一种新的高度可解释的基于树的建模框架,允许自动发现多个层次上健康决定因素之间潜在的非线性层次交互作用,以及感兴趣的组之间的生存结果差异,包括通过一个新的特定区域差异估计(SPADE)纳入这些多层次影响。

结果

PRISM 表明,种族差异对子宫内膜癌生存的层次影响似乎具有统计学意义,并且这些影响比仅使用个体水平决定因素更好地预测了生存差异。模型的可解释性允许更仔细地检查这些层次效应对差异的性质。此外,SPADE 估计显示了佛罗里达州普查区之间的明显地理模式。

结论

PRISM 可以提供一个强大的新建模框架,以更好地理解癌症生存中的种族差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4013/9888685/9e7211be2793/pone.0268221.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验