Department of Biostatistics, Vanderbilt University, 2525 West End Ave.,#1136, Nashville, TN, 37203, USA.
Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, USA.
Psychometrika. 2023 Mar;88(1):253-273. doi: 10.1007/s11336-022-09899-x. Epub 2023 Feb 1.
Reporting effect size index estimates with their confidence intervals (CIs) can be an excellent way to simultaneously communicate the strength and precision of the observed evidence. We recently proposed a robust effect size index (RESI) that is advantageous over common indices because it's widely applicable to different types of data. Here, we use statistical theory and simulations to develop and evaluate RESI estimators and confidence/credible intervals that rely on different covariance estimators. Our results show (1) counter to intuition, the randomness of covariates reduces coverage for Chi-squared and F CIs; (2) when the variance of the estimators is estimated, the non-central Chi-squared and F CIs using the parametric and robust RESI estimators fail to cover the true effect size at the nominal level. Using the robust estimator along with the proposed nonparametric bootstrap or Bayesian (credible) intervals provides valid inference for the RESI, even when model assumptions may be violated. This work forms a unified effect size reporting procedure, such that effect sizes with confidence/credible intervals can be easily reported in an analysis of variance (ANOVA) table format.
报告具有置信区间(CIs)的效应量指数估计值可以是同时传达观察到的证据的强度和精度的一种极好方法。我们最近提出了一种稳健的效应量指数(RESI),它比常见的指数更有优势,因为它广泛适用于不同类型的数据。在这里,我们使用统计理论和模拟来开发和评估依赖于不同协方差估计量的 RESI 估计量和置信/可信区间。我们的结果表明:(1)与直觉相反,协变量的随机性降低了卡方和 FCI 的覆盖率;(2)当估计量的方差被估计时,使用参数和稳健的 RESI 估计量的非中心卡方和 FCI 在名义水平上未能覆盖真实的效应量。即使模型假设可能被违反,使用稳健估计量以及提出的非参数自举或贝叶斯(可信)区间可以为 RESI 提供有效的推断。这项工作形成了一个统一的效应量报告程序,使得具有置信/可信区间的效应量可以很容易地在方差分析(ANOVA)表格式中报告。