Suppr超能文献

星形胶质细胞介导的肌纤维收缩转导同步海马神经元网络发育。

Astrocyte-mediated Transduction of Muscle Fiber Contractions Synchronizes Hippocampal Neuronal Network Development.

机构信息

Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

Department of Psychology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Neuroscience. 2023 Apr 1;515:25-36. doi: 10.1016/j.neuroscience.2023.01.028. Epub 2023 Feb 2.

Abstract

Exercise supports brain health in part by enhancing hippocampal function. The leading hypothesis is that muscles release factors when they contract (e.g., lactate, myokines, growth factors) that enter circulation and reach the brain where they enhance plasticity (e.g., increase neurogenesis and synaptogenesis). However, it remains unknown how the muscle signals are transduced by the hippocampal cells to modulate network activity and synaptic development. Thus, we established an in vitro model in which the media from contracting primary muscle cells (CM) is applied to developing primary hippocampal cell cultures on a microelectrode array. We found that the hippocampal neuronal network matures more rapidly (as indicated by synapse development and synchronous neuronal activity) when exposed to CM than regular media (RM). This was accompanied by a 4.4- and 1.4-fold increase in the proliferation of astrocytes and neurons, respectively. Further, experiments established that factors released by astrocytes inhibit neuronal hyper-excitability induced by muscle media, and facilitate network development. Results provide new insight into how exercise may support hippocampal function by regulating astrocyte proliferation and subsequent taming of neuronal activity into an integrated network.

摘要

运动通过增强海马功能来支持大脑健康。主导假说认为,肌肉在收缩时会释放因子(例如乳酸、肌肉因子、生长因子),这些因子进入循环系统并到达大脑,从而增强大脑的可塑性(例如,增加神经发生和突触形成)。然而,肌肉信号如何被海马细胞转导以调节网络活动和突触发育仍不清楚。因此,我们建立了一种体外模型,其中将收缩的原代肌肉细胞(CM)的培养基应用于微电极阵列上的原代海马细胞培养物。我们发现,与常规培养基(RM)相比,暴露于 CM 的海马神经元网络成熟得更快(表现为突触发育和同步神经元活动)。这伴随着星形胶质细胞和神经元增殖分别增加了 4.4 倍和 1.4 倍。此外,实验还证实,星形胶质细胞释放的因子可抑制肌肉介质引起的神经元过度兴奋,并促进网络发育。研究结果为运动如何通过调节星形胶质细胞增殖以及随后将神经元活动驯化为一个整合的网络来支持海马功能提供了新的见解。

相似文献

9
On the Run for Hippocampal Plasticity.在海马体可塑性方面的研究进展。
Cold Spring Harb Perspect Med. 2018 Apr 2;8(4):a029736. doi: 10.1101/cshperspect.a029736.

本文引用的文献

2
Development of 3D neuromuscular bioactuators.3D神经肌肉生物致动器的开发。
APL Bioeng. 2020 Mar 10;4(1):016107. doi: 10.1063/1.5134477. eCollection 2020 Mar.
4
Endocrine Crosstalk Between Skeletal Muscle and the Brain.骨骼肌与大脑之间的内分泌相互作用
Front Neurol. 2018 Aug 24;9:698. doi: 10.3389/fneur.2018.00698. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验