贝叶斯虚拟癫痫患者:一个概率框架,旨在推断癫痫传播的个体化大规模脑模型中致痫性的空间图。
The Bayesian Virtual Epileptic Patient: A probabilistic framework designed to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread.
机构信息
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
出版信息
Neuroimage. 2020 Aug 15;217:116839. doi: 10.1016/j.neuroimage.2020.116839. Epub 2020 May 7.
Despite the importance and frequent use of Bayesian frameworks in brain network modeling for parameter inference and model prediction, the advanced sampling algorithms implemented in probabilistic programming languages to overcome the inference difficulties have received relatively little attention in this context. In this technical note, we propose a probabilistic framework, namely the Bayesian Virtual Epileptic Patient (BVEP), which relies on the fusion of structural data of individuals to infer the spatial map of epileptogenicity in a personalized large-scale brain model of epilepsy spread. To invert the individualized whole-brain model employed in this study, we use the recently developed algorithms known as No-U-Turn Sampler (NUTS) as well as Automatic Differentiation Variational Inference (ADVI). Our results indicate that NUTS and ADVI accurately estimate the degree of epileptogenicity of brain regions, therefore, the hypothetical brain areas responsible for the seizure initiation and propagation, while the convergence diagnostics and posterior behavior analysis validate the reliability of the estimations. Moreover, we illustrate the efficiency of the transformed non-centered parameters in comparison to centered form of parameterization. The Bayesian framework used in this work proposes an appropriate patient-specific strategy for estimating the epileptogenicity of the brain regions to improve outcome after epilepsy surgery.
尽管贝叶斯框架在脑网络建模中对于参数推断和模型预测非常重要且经常使用,但在这种情况下,概率编程语言中实现的高级采样算法来克服推断困难却相对较少受到关注。在本技术说明中,我们提出了一个概率框架,即贝叶斯虚拟癫痫患者(BVEP),它依赖于个体结构数据的融合,以推断癫痫传播的个体化大规模脑模型中致痫性的空间图谱。为了反转本研究中使用的个体化全脑模型,我们使用了最近开发的称为无翻转采样器(NUTS)和自动微分变分推断(ADVI)的算法。我们的结果表明,NUTS 和 ADVI 可以准确估计脑区的致痫程度,因此,可以确定负责癫痫发作起始和传播的假设脑区,而收敛诊断和后验行为分析验证了估计的可靠性。此外,我们还说明了与参数化的中心化形式相比,转换后的非中心化参数的效率。本工作中使用的贝叶斯框架提出了一种适当的针对患者的策略,用于估计脑区的致痫性,以提高癫痫手术后的预后。