Suppr超能文献

新型基于 LED 的紫外辐照技术的抗菌效果和灭活动力学。

Antimicrobial efficacy and inactivation kinetics of a novel LED-based UV-irradiation technology.

机构信息

Department of Biotechnology and Food Engineering, MCI - The Entrepreneurial School, Innsbruck, Austria.

Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, Innsbruck, Austria.

出版信息

J Hosp Infect. 2023 May;135:11-17. doi: 10.1016/j.jhin.2022.12.023. Epub 2023 Feb 6.

Abstract

BACKGROUND

Ultraviolet (UV)-light-emitting diodes (UV-LEDs) are energy efficient and of special interest for the inactivation of micro-organisms. In the context of the coronavirus disease 2019 pandemic, novel UV technologies can offer a powerful alternative for effective infection prevention and control.

METHODS

This study assessed the antimicrobial efficacy of UV-C LEDs on Escherichia coli, Pseudomonas fluorescens and Listeria innocua, as well as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), human immunodeficiency virus-1 (HIV-1) and murine norovirus (MNV), dried on inanimate surfaces, based on European Standard EN 17272.

RESULTS

This study found 90% inactivation rates for the tested bacteria at mean UV-C doses, averaged over all three investigated UV-C wavelengths, of 1.7 mJ/cm for E. coli, 1.9 mJ/cm for P. fluorescens and 1.5 mJ/cm for L. innocua. For the tested viruses, UV doses <15 mJ/cm resulted in 90% inactivation at wavelengths of 255 and 265 nm. Exposure of viruses to longer UV wavelengths, such as 275 and 285 nm, required much higher doses (up to 120 mJ/cm) for inactivation. Regarding inactivation, non-enveloped MNV required much higher UV doses for all tested wavelengths compared with SARS-CoV-2 or HIV-1.

CONCLUSION

Overall, the results support the use of LEDs emitting at shorter wavelengths of the UV-C spectrum to inactivate bacteria as well as enveloped and non-enveloped viruses by exposure to the appropriate UV dose. However, low availability and excessive production costs of shortwave UV-C LEDs restricts implementation at present, and supports the use of longwave UV-C LEDs in combination with higher irradiation doses.

摘要

背景

紫外线(UV)发光二极管(UV-LED)具有节能优势,对于微生物的灭活特别有吸引力。在 2019 年冠状病毒病大流行的背景下,新型 UV 技术为有效的感染预防和控制提供了一种强大的替代方案。

方法

本研究根据欧洲标准 EN 17272,评估了 UV-C LED 对大肠杆菌、荧光假单胞菌和无害李斯特菌以及严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)、人类免疫缺陷病毒 1(HIV-1)和鼠诺如病毒(MNV)的抗菌效果,这些病原体都被干燥在无生命的表面上。

结果

本研究发现,对于测试的细菌,在所有三种研究的 UV-C 波长下,平均 UV-C 剂量为 1.7 mJ/cm 时,可达到 90%的灭活率,其中大肠杆菌的平均剂量为 1.7 mJ/cm,荧光假单胞菌为 1.9 mJ/cm,无害李斯特菌为 1.5 mJ/cm。对于测试的病毒,在波长为 255 和 265nm 时,UV 剂量<15 mJ/cm 可导致 90%的病毒灭活。对于较长的 UV 波长,如 275 和 285nm,需要更高的剂量(高达 120 mJ/cm)才能实现病毒灭活。就灭活而言,与 SARS-CoV-2 或 HIV-1 相比,非包膜的 MNV 对于所有测试波长都需要更高的 UV 剂量。

结论

总体而言,这些结果支持使用较短波长的 UV-C 光谱的 LED 来灭活细菌以及包膜和非包膜病毒,只要暴露于适当的 UV 剂量即可。然而,短波长 UV-C LED 的低可用性和过高的生产成本限制了其目前的实施,支持在长波长 UV-C LED 与更高的辐照剂量相结合的情况下使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3771/10041887/4274e59ee825/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验