Suppr超能文献

从蛋白质组学推断糖尿病肾病的分子途径

Molecular Pathways of Diabetic Kidney Disease Inferred from Proteomics.

作者信息

Wei Lan, Han Yuanyuan, Tu Chao

机构信息

Department of Internal Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, People's Republic of China.

Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, People's Republic of China.

出版信息

Diabetes Metab Syndr Obes. 2023 Jan 12;16:117-128. doi: 10.2147/DMSO.S392888. eCollection 2023.

Abstract

Diabetic kidney disease (DKD) affects an estimated 20-40% of type 2 diabetes patients and is among the most prevalent microvascular complications in this patient population, contributing to high morbidity and mortality rates. Currently, changes in albuminuria status are thought to be a primary indicator of the onset or progression of DKD, yet progressive nephropathy and renal impairment can occur in certain diabetic individuals who exhibit normal urinary albumin levels, emphasizing the lack of sensitivity and specificity associated with the use of albuminuria as a biomarker for detecting diabetic kidney disease and predicting DKD risk. According to the study, a non-invasive method for early detection or prediction of DKD may involve combining proteomic analytical techniques such second generation sequencing, mass spectrometry, two-dimensional gel electrophoresis, and other advanced system biology algorithms. Another category of proteins of relevance may now be provided by renal tissue biomarkers. The establishment of reliable proteomic biomarkers of DKD represents a novel approach to improving the diagnosis, prognostic evaluation, and treatment of affected patients. In the present review, a series of protein biomarkers that have been characterized to date are discussed, offering a theoretical foundation for future efforts to aid patients suffering from this debilitating microvascular complication.

摘要

糖尿病肾病(DKD)影响着约20%-40%的2型糖尿病患者,是该患者群体中最常见的微血管并发症之一,导致高发病率和死亡率。目前,蛋白尿状态的变化被认为是DKD发病或进展的主要指标,然而,在某些尿白蛋白水平正常的糖尿病个体中也可能发生进行性肾病和肾功能损害,这凸显了将蛋白尿用作检测糖尿病肾病和预测DKD风险的生物标志物时缺乏敏感性和特异性。根据该研究,一种用于早期检测或预测DKD的非侵入性方法可能涉及结合蛋白质组分析技术,如第二代测序、质谱分析、二维凝胶电泳以及其他先进的系统生物学算法。另一类相关蛋白质现在可能由肾组织生物标志物提供。建立可靠的DKD蛋白质组学生物标志物代表了一种改善受影响患者诊断、预后评估和治疗的新方法。在本综述中,讨论了一系列迄今为止已被鉴定的蛋白质生物标志物,为未来帮助患有这种使人衰弱的微血管并发症的患者的努力提供了理论基础。

相似文献

1
Molecular Pathways of Diabetic Kidney Disease Inferred from Proteomics.从蛋白质组学推断糖尿病肾病的分子途径
Diabetes Metab Syndr Obes. 2023 Jan 12;16:117-128. doi: 10.2147/DMSO.S392888. eCollection 2023.
2
Biomarkers of diabetic nephropathy: A 2017 update.糖尿病肾病的生物标志物:2017 年更新。
Crit Rev Clin Lab Sci. 2017 Aug;54(5):326-342. doi: 10.1080/10408363.2017.1377682. Epub 2017 Sep 28.
4
Clinical predictive factors in diabetic kidney disease progression.糖尿病肾病进展的临床预测因素。
J Diabetes Investig. 2017 Jan;8(1):6-18. doi: 10.1111/jdi.12533. Epub 2016 Jun 8.
5
Diabetic nephropathy: traditional to proteomic markers.糖尿病肾病:从传统标志物到蛋白质组学标志物。
Clin Chim Acta. 2013 Jun 5;421:17-30. doi: 10.1016/j.cca.2013.02.019. Epub 2013 Feb 26.
7
New insights into the use of biomarkers of diabetic nephropathy.糖尿病肾病生物标志物应用的新见解。
Adv Chronic Kidney Dis. 2014 May;21(3):318-26. doi: 10.1053/j.ackd.2014.03.008.

本文引用的文献

1
Comprehensive Diagnostics of Diabetic Nephropathy by Transcriptome RNA Sequencing.通过转录组RNA测序对糖尿病肾病进行综合诊断
Diabetes Metab Syndr Obes. 2022 Oct 10;15:3069-3080. doi: 10.2147/DMSO.S371026. eCollection 2022.
7
Acylcarnitines: Can They Be Biomarkers of Diabetic Nephropathy?酰基肉碱:它们能否成为糖尿病肾病的生物标志物?
Diabetes Metab Syndr Obes. 2022 Jan 29;15:247-256. doi: 10.2147/DMSO.S350233. eCollection 2022.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验