文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于生物医学应用的聚合物膜。

Polymeric Membranes for Biomedical Applications.

作者信息

Radu Elena Ruxandra, Voicu Stefan Ioan, Thakur Vijay Kumar

机构信息

Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 011061 Bucharest, Romania.

Advanced Polymers Materials Group, University Politehnica of Bucharest, 011061 Bucharest, Romania.

出版信息

Polymers (Basel). 2023 Jan 25;15(3):619. doi: 10.3390/polym15030619.


DOI:10.3390/polym15030619
PMID:36771921
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9919920/
Abstract

Polymeric membranes are selective materials used in a wide range of applications that require separation processes, from water filtration and purification to industrial separations. Because of these materials' remarkable properties, namely, selectivity, membranes are also used in a wide range of biomedical applications that require separations. Considering the fact that most organs (apart from the heart and brain) have separation processes associated with the physiological function (kidneys, lungs, intestines, stomach, etc.), technological solutions have been developed to replace the function of these organs with the help of polymer membranes. This review presents the main biomedical applications of polymer membranes, such as hemodialysis (for chronic kidney disease), membrane-based artificial oxygenators (for artificial lung), artificial liver, artificial pancreas, and membranes for osseointegration and drug delivery systems based on membranes.

摘要

聚合物膜是一种选择性材料,用于广泛的需要分离过程的应用中,从水过滤和净化到工业分离。由于这些材料具有卓越的性能,即选择性,膜也被用于广泛的需要分离的生物医学应用中。考虑到大多数器官(心脏和大脑除外)都有与生理功能相关的分离过程(肾脏、肺、肠道、胃等),人们已经开发出技术解决方案,借助聚合物膜来替代这些器官的功能。本文综述了聚合物膜的主要生物医学应用,如血液透析(用于慢性肾病)、基于膜的人工氧合器(用于人工肺)、人工肝、人工胰腺,以及用于骨整合的膜和基于膜的药物递送系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/f1946588e318/polymers-15-00619-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/7ae2fa98b593/polymers-15-00619-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/860d14028d2a/polymers-15-00619-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/216cba75ffd5/polymers-15-00619-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/5ef6cd603bd9/polymers-15-00619-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/5331f940b41c/polymers-15-00619-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/5ee8ddef4bc4/polymers-15-00619-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/0eb17f9efd1b/polymers-15-00619-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/f1946588e318/polymers-15-00619-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/7ae2fa98b593/polymers-15-00619-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/860d14028d2a/polymers-15-00619-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/216cba75ffd5/polymers-15-00619-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/5ef6cd603bd9/polymers-15-00619-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/5331f940b41c/polymers-15-00619-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/5ee8ddef4bc4/polymers-15-00619-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/0eb17f9efd1b/polymers-15-00619-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f346/9919920/f1946588e318/polymers-15-00619-g008.jpg

相似文献

[1]
Polymeric Membranes for Biomedical Applications.

Polymers (Basel). 2023-1-25

[2]
Recent Developments in Artificial Super-Wettable Surfaces Based on Bioinspired Polymeric Materials for Biomedical Applications.

Polymers (Basel). 2022-1-7

[3]
Membrane-based technologies for biogas separations.

Chem Soc Rev. 2009-10-6

[4]
Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes.

J Mater Chem B. 2014-11-28

[5]
Polymeric Based Hydrogel Membranes for Biomedical Applications.

Membranes (Basel). 2023-6-1

[6]
Dialysis membranes for blood purification.

Front Med Biol Eng. 2000

[7]
Porous polymeric membranes: fabrication techniques and biomedical applications.

J Mater Chem B. 2021-3-11

[8]
Recent advances in polymeric nanostructured ion selective membranes for biomedical applications.

Talanta. 2021-12-1

[9]
A review on super-wettable porous membranes and materials based on bio-polymeric chitosan for oil-water separation.

Adv Colloid Interface Sci. 2022-5

[10]
Membrane Materials for Selective Ion Separations at the Water-Energy Nexus.

Adv Mater. 2021-9

引用本文的文献

[1]
Crown Ether-Functionalized Polyethersulfone Membranes with Potential Applications in Hemodialysis.

Polymers (Basel). 2025-8-9

[2]
R Version of the Kedem-Katchalsky-Peusner Equations for Liquid Interface Potentials in a Membrane System.

Entropy (Basel). 2025-2-6

[3]
Advances in tissue engineering of peripheral nerve and tissue innervation - a systematic review.

J Tissue Eng. 2025-2-5

[4]
Machine learning models for predicting interaction affinity energy between human serum proteins and hemodialysis membrane materials.

Sci Rep. 2025-1-28

[5]
Improved Biomineralization Using Cellulose Acetate/Magnetic Nanoparticles Composite Membranes.

Polymers (Basel). 2025-1-15

[6]
Hybrid Version of the Kedem-Katchalsky-Peusner Equations for Diffusive and Electrical Transport Processes in Membrane.

Membranes (Basel). 2025-1-20

[7]
Network Derivation of Liquid Junction Potentials in Single-Membrane System.

Membranes (Basel). 2024-6-13

[8]
Polymer-Drug Anti-Thrombogenic and Hemocompatible Coatings as Surface Modifications.

Pharmaceutics. 2024-3-21

[9]
Advances in Membrane Separation for Biomaterial Dewatering.

Langmuir. 2024-3-5

[10]
State-of-the-Art Advances and Current Applications of Gel-Based Membranes.

Gels. 2024-1-1

本文引用的文献

[1]
Crown ether-functionalized cellulose acetate membranes with potential applications in osseointegration.

Int J Biol Macromol. 2023-3-1

[2]
Design and characterization of a biosensor with lipase immobilized nanoparticles in polymer film for the detection of triglycerides.

Int J Biol Macromol. 2023-2-28

[3]
A novel poly (4-methyl-1-pentene)/polypropylene (PMP/PP) thin film composite (TFC) artificial lung membrane for enhanced gas transport and excellent hemo-compatibility.

J Memb Sci. 2022-5-5

[4]
Recent Advances in Stimuli-Responsive Doxorubicin Delivery Systems for Liver Cancer Therapy.

Polymers (Basel). 2022-12-1

[5]
Dual Modification of Porous Ca-P/PLA Composites with APTES and Alendronate Improves Their Mechanical Strength and Cytobiocompatibility towards Human Osteoblasts.

Int J Mol Sci. 2022-11-18

[6]
Chitosan/Xanthan membrane containing hydroxyapatite/Graphene oxide nanocomposite for guided bone regeneration.

J Mech Behav Biomed Mater. 2022-12

[7]
Advances in Electrostatic Spinning of Polymer Fibers Functionalized with Metal-Based Nanocrystals and Biomedical Applications.

Molecules. 2022-8-29

[8]
Peptide-functionalised magnetic silk nanoparticles produced by a swirl mixer for enhanced anticancer activity of ASC-J9.

Colloids Surf B Biointerfaces. 2022-8

[9]
Preparation of poly(lactic acid)/graphene oxide nanofiber membranes with different structures by electrospinning for drug delivery.

RSC Adv. 2018-5-4

[10]
Surface hemocompatible modification of polysulfone membrane covalently grafting acrylic acid and sulfonated hydroxypropyl chitosan.

RSC Adv. 2019-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索