文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于多组学的机器学习模型对头颈部鳞状细胞癌生存结局预测的比较

Comparisons of Forecasting for Survival Outcome for Head and Neck Squamous Cell Carcinoma by using Machine Learning Models based on Multi-omics.

作者信息

Mo Liying, Su Yuangang, Yuan Jianhui, Xiao Zhiwei, Zhang Ziyan, Lan Xiuwan, Huang Daizheng

机构信息

School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi, China.

Research Centre for Regenerative Medicine, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, Guangxi, China.

出版信息

Curr Genomics. 2022 Jun 10;23(2):94-108. doi: 10.2174/1389202923666220204153744.


DOI:10.2174/1389202923666220204153744
PMID:36778975
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9878835/
Abstract

Machine learning methods showed excellent predictive ability in a wide range of fields. For the survival of head and neck squamous cell carcinoma (HNSC), its multi-omics influence is crucial. This study attempts to establish a variety of machine learning multi-omics models to predict the survival of HNSC and find the most suitable machine learning prediction method. The HNSC clinical data and multi-omics data were downloaded from the TCGA database. The important variables were screened by the LASSO algorithm. We used a total of 12 supervised machine learning models to predict the outcome of HNSC survival and compared the results. qPCR was performed to verify core genes predicted by the random forest algorithm. For omics of HNSC, the results of the twelve models showed that the performance of multi-omics was better than each single-omic alone. Results were presented, which showed that the Bayesian network(BN) model (area under the curve [AUC] 0.8250, F1 score=0.7917) and random forest(RF) model (area under the curve [AUC] 0.8002,F1 score=0.7839) played good prediction performance in HNSC multi-omics data. The results of qPCR were consistent with the RF algorithm. Machine learning methods could better forecast the survival outcome of HNSC. Meanwhile, this study found that the BN model and the RF model were the most superior. Moreover, the forecast result of multi-omics was better than single-omic alone in HNSC.

摘要

机器学习方法在广泛的领域中显示出优异的预测能力。对于头颈部鳞状细胞癌(HNSC)的生存而言,其多组学影响至关重要。本研究试图建立多种机器学习多组学模型来预测HNSC的生存情况,并找到最合适的机器学习预测方法。HNSC临床数据和多组学数据从TCGA数据库下载。通过LASSO算法筛选重要变量。我们总共使用12种监督机器学习模型来预测HNSC生存结果并比较结果。进行qPCR以验证随机森林算法预测的核心基因。对于HNSC的组学,十二个模型的结果表明多组学的性能优于每个单独的单一组学。给出的结果表明,贝叶斯网络(BN)模型(曲线下面积[AUC]0.8250,F1分数=0.7917)和随机森林(RF)模型(曲线下面积[AUC]0.8002,F1分数=0.7839)在HNSC多组学数据中表现出良好的预测性能。qPCR的结果与RF算法一致。机器学习方法可以更好地预测HNSC的生存结果。同时,本研究发现BN模型和RF模型是最优越的。此外,在HNSC中多组学的预测结果优于单独的单一组学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/720cdb177035/CG-23-94_F13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/6347c80a7045/CG-23-94_F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/801f2cc7ebe1/CG-23-94_F2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/58c0f8eb6d38/CG-23-94_F3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/4b1ce672e80c/CG-23-94_F4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/39e1a8c17d84/CG-23-94_F5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/d18baf74755d/CG-23-94_F6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/15a0c214d454/CG-23-94_F7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/b6f493383be9/CG-23-94_F8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/5204a11bc88b/CG-23-94_F9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/6290e5d2b131/CG-23-94_F10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/94654ee8fa5f/CG-23-94_F11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/f635489db617/CG-23-94_F12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/720cdb177035/CG-23-94_F13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/6347c80a7045/CG-23-94_F1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/801f2cc7ebe1/CG-23-94_F2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/58c0f8eb6d38/CG-23-94_F3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/4b1ce672e80c/CG-23-94_F4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/39e1a8c17d84/CG-23-94_F5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/d18baf74755d/CG-23-94_F6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/15a0c214d454/CG-23-94_F7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/b6f493383be9/CG-23-94_F8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/5204a11bc88b/CG-23-94_F9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/6290e5d2b131/CG-23-94_F10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/94654ee8fa5f/CG-23-94_F11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/f635489db617/CG-23-94_F12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eec6/9878835/720cdb177035/CG-23-94_F13.jpg

相似文献

[1]
Comparisons of Forecasting for Survival Outcome for Head and Neck Squamous Cell Carcinoma by using Machine Learning Models based on Multi-omics.

Curr Genomics. 2022-6-10

[2]
Machine learning models predict the primary sites of head and neck squamous cell carcinoma metastases based on DNA methylation.

J Pathol. 2022-4

[3]
Exploring machine learning strategies for predicting cardiovascular disease risk factors from multi-omic data.

BMC Med Inform Decis Mak. 2024-5-2

[4]
Construction of the prognostic signature of alternative splicing revealed the prognostic predictor and immune microenvironment in head and neck squamous cell carcinoma.

Front Genet. 2022-10-21

[5]
Integrative Models of Histopathological Image Features and Omics Data Predict Survival in Head and Neck Squamous Cell Carcinoma.

Front Cell Dev Biol. 2020-10-29

[6]
Establishment of an immune-related gene prognostic model for head and neck tumors.

J Biol Regul Homeost Agents. 2021

[7]
Large-scale benchmark study of survival prediction methods using multi-omics data.

Brief Bioinform. 2021-5-20

[8]
Block Forests: random forests for blocks of clinical and omics covariate data.

BMC Bioinformatics. 2019-6-27

[9]
Multi-Omics Integration Reveals the Crucial Role of in the Inflammatory Immune Microenvironment in Head and Neck Squamous Cell Carcinoma.

Microbiol Spectr. 2022-8-31

[10]
Overexpression of LIMA1 Indicates Poor Prognosis and Promotes Epithelial-Mesenchymal Transition in Head and Neck Squamous Cell Carcinoma.

Clin Med Insights Oncol. 2022-7-8

引用本文的文献

[1]
Survival prediction landscape: an in-depth systematic literature review on activities, methods, tools, diseases, and databases.

Front Artif Intell. 2024-7-3

[2]
Comprehensive analysis revealed P4Hs as new biomarkers for prognosis and immunotherapy in head and neck cancer.

Sci Rep. 2024-5-28

本文引用的文献

[1]
Transcriptome profiling by combined machine learning and statistical R analysis identifies TMEM236 as a potential novel diagnostic biomarker for colorectal cancer.

Sci Rep. 2021-7-12

[2]
Integrating multi-omics data through deep learning for accurate cancer prognosis prediction.

Comput Biol Med. 2021-7

[3]
Identification of potential core genes and pathways predicting pathogenesis in head and neck squamous cell carcinoma.

Biosci Rep. 2021-5-28

[4]
MicroRNA profile in the squamous cell carcinoma: prognostic and diagnostic roles.

Heliyon. 2020-11-6

[5]
Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets.

Biosci Rep. 2020-10-30

[6]
Logistic LASSO Regression for Dietary Intakes and Breast Cancer.

Nutrients. 2020-8-31

[7]
Detecting Prognosis Risk Biomarkers for Colon Cancer Through Multi-Omics-Based Prognostic Analysis and Target Regulation Simulation Modeling.

Front Genet. 2020-5-26

[8]
CA9 transcriptional expression determines prognosis and tumour grade in tongue squamous cell carcinoma patients.

J Cell Mol Med. 2020-5

[9]
An Analysis of QSAR Research Based on Machine Learning Concepts.

Curr Drug Discov Technol. 2021

[10]
Identification and validation of immune-related lncRNA prognostic signature for breast cancer.

Genomics. 2020-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索