Suppr超能文献

贝叶斯推断美洲原住民和北极人群的混合图。

Bayesian inference of admixture graphs on Native American and Arctic populations.

机构信息

Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark.

Center for Computational Biology, University of California Berkeley, Berkeley, California, United States of America.

出版信息

PLoS Genet. 2023 Feb 13;19(2):e1010410. doi: 10.1371/journal.pgen.1010410. eCollection 2023 Feb.

Abstract

Admixture graphs are mathematical structures that describe the ancestry of populations in terms of divergence and merging (admixing) of ancestral populations as a graph. An admixture graph consists of a graph topology, branch lengths, and admixture proportions. The branch lengths and admixture proportions can be estimated using numerous numerical optimization methods, but inferring the topology involves a combinatorial search for which no polynomial algorithm is known. In this paper, we present a reversible jump MCMC algorithm for sampling high-probability admixture graphs and show that this approach works well both as a heuristic search for a single best-fitting graph and for summarizing shared features extracted from posterior samples of graphs. We apply the method to 11 Native American and Siberian populations and exploit the shared structure of high-probability graphs to characterize the relationship between Saqqaq, Inuit, Koryaks, and Athabascans. Our analyses show that the Saqqaq is not a good proxy for the previously identified gene flow from Arctic people into the Na-Dene speaking Athabascans.

摘要

混合图是一种数学结构,用于描述群体的祖先历史,通过祖先群体的分歧和融合(混合)来表示。混合图由图拓扑结构、分支长度和混合比例组成。分支长度和混合比例可以使用许多数值优化方法来估计,但推断拓扑结构涉及到组合搜索,目前还没有已知的多项式算法。在本文中,我们提出了一种可用于采样高概率混合图的可逆跳跃 MCMC 算法,并证明了该方法在单个最佳拟合图的启发式搜索和从图的后验样本中提取的共享特征的总结方面都非常有效。我们将该方法应用于 11 个美洲原住民和西伯利亚人群,并利用高概率图的共享结构来描述萨卡加维亚、因纽特人、科里亚克人和阿萨巴斯卡人的关系。我们的分析表明,萨卡加维亚不是之前确定的来自北极地区的人与讲纳-德内语的阿萨巴斯卡人之间基因流动的良好代表。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e65e/9956672/70871556f82a/pgen.1010410.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验