Suppr超能文献

在小鼠的新嗅觉环境中进行稳健的气味识别。

Robust odor identification in novel olfactory environments in mice.

机构信息

Department of Biomedical Sciences, New York Institute of Technology, College of Osteopathic Medicine, Northern Boulevard, PO Box 8000, Old Westbury, NY, 11568, USA.

出版信息

Nat Commun. 2023 Feb 13;14(1):673. doi: 10.1038/s41467-023-36346-x.

Abstract

Relevant odors signaling food, mates, or predators can be masked by unpredictable mixtures of less relevant background odors. Here, we developed a mouse behavioral paradigm to test the role played by the novelty of the background odors. During the task, mice identified target odors in previously learned background odors and were challenged by catch trials with novel background odors, a task similar to visual CAPTCHA. Female wild-type (WT) mice could accurately identify known targets in novel background odors. WT mice performance was higher than linear classifiers and the nearest neighbor classifier trained using olfactory bulb glomerular activation patterns. Performance was more consistent with an odor deconvolution method. We also used our task to investigate the performance of female Cntnap2 mice, which show some autism-like behaviors. Cntnap2 mice had glomerular activation patterns similar to WT mice and matched WT mice target detection for known background odors. However, Cntnap2 mice performance fell almost to chance levels in the presence of novel backgrounds. Our findings suggest that mice use a robust algorithm for detecting odors in novel environments and this computation is impaired in Cntnap2 mice.

摘要

相关的气味信号可以掩盖食物、配偶或捕食者,但会被不相关的背景气味的不可预测混合物所掩盖。在这里,我们开发了一种小鼠行为范式来测试背景气味新颖性所起的作用。在任务中,老鼠在先前学习的背景气味中识别目标气味,并通过具有新颖背景气味的捕获试验进行挑战,这一任务类似于视觉 CAPTCHA。野生型雌性(WT)老鼠可以准确识别新颖背景气味中的已知目标。WT 老鼠的表现优于使用嗅球神经球激活模式训练的线性分类器和最近邻分类器。表现与气味反卷积方法更一致。我们还使用我们的任务来研究表现出一些自闭症样行为的 Cntnap2 雌性老鼠的表现。Cntnap2 老鼠的神经球激活模式与 WT 老鼠相似,并且与 WT 老鼠对已知背景气味的目标检测相匹配。然而,在存在新颖背景的情况下,Cntnap2 老鼠的表现几乎降至随机水平。我们的研究结果表明,老鼠使用一种强大的算法来检测新环境中的气味,而这种计算在 Cntnap2 老鼠中受到了损害。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fe0/9925783/3529ea8c8b1e/41467_2023_36346_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验