Suppr超能文献

使用全切片成像技术对高级别浆液性卵巢癌进行组织病理学亚型分类。

Histopathological subtyping of high-grade serous ovarian cancer using whole slide imaging.

机构信息

Department of Obstetrics and Gynecology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.

Department of Pathology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan.

出版信息

J Gynecol Oncol. 2023 Jul;34(4):e47. doi: 10.3802/jgo.2023.34.e47. Epub 2023 Feb 10.

Abstract

OBJECTIVE

We have established 4 histopathologic subtyping of high-grade serous ovarian cancer (HGSOC) and reported that the mesenchymal transition (MT) type has a worse prognosis than the other subtypes. In this study, we modified the histopathologic subtyping algorithm to achieve high interobserver agreement in whole slide imaging (WSI) and to characterize the tumor biology of MT type for treatment individualization.

METHODS

Four observers performed histopathological subtyping using WSI of HGSOC in The Cancer Genome Atlas data. As a validation set, cases from Kindai and Kyoto Universities were independently evaluated by the 4 observers to determine concordance rates. In addition, genes highly expressed in MT type were examined by gene ontology term analysis. Immunohistochemistry was also performed to validate the pathway analysis.

RESULTS

After algorithm modification, the kappa coefficient, which indicates interobserver agreement, was greater than 0.5 (moderate agreement) for the 4 classifications and greater than 0.7 (substantial agreement) for the 2 classifications (MT vs. non-MT). Gene expression analysis showed that gene ontology terms related to angiogenesis and immune response were enriched in the genes highly expressed in the MT type. CD31 positive microvessel density was higher in the MT type compared to the non-MT type, and tumor groups with high infiltration of CD8/CD103 positive immune cells were observed in the MT type.

CONCLUSION

We developed an algorithm for reproducible histopathologic subtyping classification of HGSOC using WSI. The results of this study may be useful for treatment individualization of HGSOC, including angiogenesis inhibitors and immunotherapy.

摘要

目的

我们已经建立了 4 种高级别浆液性卵巢癌(HGSOC)的组织病理学亚型,并报告说间质转化(MT)型比其他亚型预后更差。在这项研究中,我们修改了组织病理学亚型分类算法,以实现全切片成像(WSI)中的高观察者间一致性,并对 MT 型肿瘤生物学进行特征描述,以实现个体化治疗。

方法

四位观察者使用癌症基因组图谱(TCGA)数据中的 HGSOC WSI 进行组织病理学亚型分类。作为验证集,由 4 位观察者独立评估来自日本近畿大学和京都大学的病例,以确定一致性率。此外,通过基因本体论术语分析检查高度表达于 MT 型的基因。还进行了免疫组织化学染色以验证通路分析。

结果

经过算法修改后,4 位观察者对 4 种分类的kappa 系数(表示观察者间一致性的指标)大于 0.5(中度一致),对 2 种分类(MT 型与非 MT 型)的kappa 系数大于 0.7(高度一致)。基因表达分析表明,高度表达于 MT 型的基因中富集了与血管生成和免疫反应相关的基因本体论术语。与非 MT 型相比,MT 型的 CD31 阳性微血管密度更高,并且在 MT 型中观察到 CD8/CD103 阳性免疫细胞浸润较高的肿瘤组。

结论

我们开发了一种使用 WSI 对 HGSOC 进行可重复的组织病理学亚型分类的算法。本研究的结果可能对 HGSOC 的个体化治疗有用,包括血管生成抑制剂和免疫疗法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d1/10323300/aa4419770880/jgo-34-e47-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验