Suppr超能文献

用于微生物常规鉴定的Autof Ms1000和EXS3000基质辅助激光解吸电离飞行时间质谱平台的比较

Comparison of Autof Ms1000 and EXS3000 MALDI-TOF MS Platforms for Routine Identification of Microorganisms.

作者信息

Xiong Lijuan, Long Xu, Ni Lijun, Wang Lili, Zhang Yang, Cui Lili, Guo Jian, Yang Chunying

机构信息

Department of Laboratory Medicine, the Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guizhou, People's Republic of China.

Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.

出版信息

Infect Drug Resist. 2023 Feb 15;16:913-921. doi: 10.2147/IDR.S352307. eCollection 2023.

Abstract

PURPOSE

Matrix-assisted laser desorption-ionization-time of flight mass spectrometry (MALDI-TOF) has recently been widely used in clinical microbiology laboratories, with the advantages of being reliable, rapid, and cost-effective. Here, we reported the performance of two MALDI-TOF MS instruments, EXS3000 (Zybio, China) and Autof ms1000 (Autobio, China), which are commonly used in clinical microbiology field.

METHODS

A total of 209 common clinical common isolates, including 70 gram-negative bacteria strains, 58 gram-positive bacteria strains, 33 yeast strains, 15 anaerobic bacteria strains, and 33 mold strains, and 19 mycobacterial strains were tested. All strains were identified by EXS3000 (Zybio, China) and Autof ms1000 (Autobio, China). Sequence analysis of 16S rRNA or ITS regions was used to verify all strains.

RESULTS

Current study found that species-level discrimination was found to be 191 (91.39%) and 190 (90.91%) by EXS3000 and Autof ms1000, respectively. Genus-level discrimination was 205 (98.09%) by the EXS3000 and 205 (98.09%) by the Autof ms1000, respectively. The correct results at species level of the EXS3000 were 91.43% (64/70) for gram-negative bacteria, 93.1% (54/58) for gram-positive cocci, 93.94% (31/33) for yeast, 100% (15/15) for anaerobes and 81.82% (27/33) for filamentous fungi. The correct results at species level of the Autof ms1000 were 92.86% (65/70) for gram-negative bacteria, 91.38% (53/58) for gram-positive cocci, 93.94% (31/33) for yeast, 100% (15/15) for anaerobes and 78.79% (26/33) for filamentous fungi.

CONCLUSION

Although the results show that the EXS3000 and Autof ms1000 systems are equally good choices in terms of analytical efficiency for routine procedures, the test result of EXS3000 is slightly better than Autof ms1000. It's worth mentioning that the target plate of the EXS 3000 instrument is reusable, but the target plate of the Autof ms1000 is disposable, making the EXS3000 more effective in reducing costs.

摘要

目的

基质辅助激光解吸电离飞行时间质谱(MALDI-TOF)最近在临床微生物实验室中得到广泛应用,具有可靠、快速且经济高效的优点。在此,我们报告了临床微生物学领域常用的两款MALDI-TOF MS仪器,即EXS3000(中国珠海银科)和Autof ms1000(中国郑州安图生物)的性能。

方法

共测试了209株常见临床分离株,包括70株革兰氏阴性菌、58株革兰氏阳性菌、33株酵母、15株厌氧菌、33株霉菌以及19株分枝杆菌。所有菌株均通过EXS3000(中国珠海银科)和Autof ms1000(中国郑州安图生物)进行鉴定。使用16S rRNA或ITS区域的序列分析对所有菌株进行验证。

结果

当前研究发现,EXS3000和Autof ms1000在种水平的鉴别率分别为191株(91.39%)和190株(90.91%)。EXS3000和Autof ms1000在属水平的鉴别率分别为205株(98.09%)。EXS3000在种水平的正确结果为:革兰氏阴性菌91.43%(64/70)、革兰氏阳性球菌93.1%(54/58)、酵母93.94%(31/33)、厌氧菌100%(15/15)、丝状真菌81.82%(27/33)。Autof ms1000在种水平的正确结果为:革兰氏阴性菌92.86%(65/70)、革兰氏阳性球菌91.38%(53/58)、酵母93.94%(31/33)、厌氧菌100%(15/15)、丝状真菌78.79%(26/33)。

结论

尽管结果表明EXS3000和Autof ms1000系统在常规程序的分析效率方面同样是不错的选择,但EXS3000的测试结果略优于Autof ms1000。值得一提的是,EXS3000仪器的靶板可重复使用,而Autof ms1000的靶板是一次性的,这使得EXS3000在降低成本方面更具优势。

相似文献

1
Comparison of Autof Ms1000 and EXS3000 MALDI-TOF MS Platforms for Routine Identification of Microorganisms.
Infect Drug Resist. 2023 Feb 15;16:913-921. doi: 10.2147/IDR.S352307. eCollection 2023.
2
Comparison of Autof ms1000 and Bruker Biotyper MALDI-TOF MS Platforms for Routine Identification of Clinical Microorganisms.
Biomed Res Int. 2021 Mar 3;2021:6667623. doi: 10.1155/2021/6667623. eCollection 2021.
3
Evaluation of the Autof ms1000 mass spectrometry for rapid clinical identification of filamentous fungi.
BMC Microbiol. 2023 Aug 22;23(1):228. doi: 10.1186/s12866-023-02968-w.
4
Evaluation of the Autof MS1000 mass spectrometer in the identification of clinical isolates.
BMC Microbiol. 2020 Oct 20;20(1):318. doi: 10.1186/s12866-020-02005-0.
6
Evaluation of the Zybio EXS3000 mass spectrometry in routine identification of Clinical isolates.
Heliyon. 2023 Aug 7;9(8):e18990. doi: 10.1016/j.heliyon.2023.e18990. eCollection 2023 Aug.
9
Evaluation of Autof MS 1000 and Vitek MS MALDI-TOF MS System in Identification of Closely-Related Yeasts Causing Invasive Fungal Diseases.
Front Cell Infect Microbiol. 2021 Feb 18;11:628828. doi: 10.3389/fcimb.2021.628828. eCollection 2021.

引用本文的文献

1
Diversity, Distribution, and Phenotypic Characterization of Cultivable Wild Yeasts Isolated from Natural Forest.
F1000Res. 2025 Apr 8;14:105. doi: 10.12688/f1000research.160250.3. eCollection 2025.
6
MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory.
Microorganisms. 2024 Feb 3;12(2):322. doi: 10.3390/microorganisms12020322.
7
Rapid discrimination of subspecies based on MALDI-TOF MS and machine learning.
Front Microbiol. 2023 Dec 4;14:1297451. doi: 10.3389/fmicb.2023.1297451. eCollection 2023.
8
Antibiotic Resistance and Epidemiology of from Clinical Samples in Nantong, China, 2018-2021.
Infect Drug Resist. 2023 Dec 4;16:7413-7425. doi: 10.2147/IDR.S432197. eCollection 2023.

本文引用的文献

3
Identification of filamentous fungi including dermatophytes using MALDI-TOF mass spectrometry.
Folia Microbiol (Praha). 2022 Feb;67(1):55-61. doi: 10.1007/s12223-021-00917-6. Epub 2021 Sep 9.
5
Identification of Zoophilic Dermatophytes Using MALDI-TOF Mass Spectrometry.
Front Cell Infect Microbiol. 2021 Apr 28;11:631681. doi: 10.3389/fcimb.2021.631681. eCollection 2021.
8
Development of a novel MALDI-TOF MS-based bile solubility test for rapid discrimination of Streptococcus pneumoniae.
Int J Med Microbiol. 2020 Apr;310(3):151413. doi: 10.1016/j.ijmm.2020.151413. Epub 2020 Feb 14.
10
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry in clinical microbiology: An updating review.
Infect Genet Evol. 2019 Dec;76:104063. doi: 10.1016/j.meegid.2019.104063. Epub 2019 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验