School of Informatics, University of Edinburgh, Edinburgh EH8 9YL, UK.
Intelligent Autonomous Systems, Technische Universität Darmstadt, Darmstadt 64289, Germany.
Cell Rep Methods. 2023 Jan 3;3(1):100374. doi: 10.1016/j.crmeth.2022.100374. eCollection 2023 Jan 23.
Antibodies are multimeric proteins capable of highly specific molecular recognition. The complementarity determining region 3 of the antibody variable heavy chain (CDRH3) often dominates antigen-binding specificity. Hence, it is a priority to design optimal antigen-specific CDRH3 to develop therapeutic antibodies. The combinatorial structure of CDRH3 sequences makes it impossible to query binding-affinity oracles exhaustively. Moreover, antibodies are expected to have high target specificity and developability. Here, we present AntBO, a combinatorial Bayesian optimization framework utilizing a CDRH3 trust region for an design of antibodies with favorable developability scores. The experiments on 159 antigens demonstrate that AntBO is a step toward practically viable antibody design. In under 200 calls to the oracle, AntBO suggests antibodies outperforming the best binding sequence from 6.9 million experimentally obtained CDRH3s. Additionally, AntBO finds very-high-affinity CDRH3 in only 38 protein designs while requiring no domain knowledge.
抗体是能够进行高度特异性分子识别的多聚体蛋白。抗体可变重链的互补决定区 3(CDRH3)通常主导抗原结合特异性。因此,设计最佳的抗原特异性 CDRH3 以开发治疗性抗体是当务之急。CDRH3 序列的组合结构使得不可能详尽地查询结合亲和力预言。此外,抗体需要具有高的靶标特异性和可开发性。在这里,我们提出了 AntBO,这是一个利用 CDRH3 置信域进行组合贝叶斯优化的框架,用于设计具有良好可开发性评分的抗体。在 159 个抗原的实验中,证明 AntBO 是朝着实际可行的抗体设计迈出的一步。在不到 200 次对预言的调用中,AntBO 建议的抗体在结合亲和力方面优于从 690 万个实验获得的 CDRH3 中最好的序列。此外,AntBO 在仅 38 个蛋白质设计中找到非常高亲和力的 CDRH3,而不需要领域知识。