Suppr超能文献

医学领域知识对用于阿尔茨海默病预测的深度学习的影响。

Influence of medical domain knowledge on deep learning for Alzheimer's disease prediction.

作者信息

Ljubic Branimir, Roychoudhury Shoumik, Cao Xi Hang, Pavlovski Martin, Obradovic Stefan, Nair Richard, Glass Lucas, Obradovic Zoran

机构信息

Center for Data Analytics and Biomedical Informatics (DABI), Temple University, 1925 N 12th Street, SERC 035-02, Philadelphia, PA 19122, USA.

Department of Computer Science, Brendan Iribe Center for Computer Science and Engineering, University of Maryland, 8125 Paint Branch Drive, College Park, MD 20742, USA.

出版信息

Comput Methods Programs Biomed. 2020 Dec;197:105765. doi: 10.1016/j.cmpb.2020.105765. Epub 2020 Sep 20.

Abstract

BACKGROUND AND OBJECTIVE

Alzheimer's disease (AD) is the most common type of dementia that can seriously affect a person's ability to perform daily activities. Estimates indicate that AD may rank third as a cause of death for older people, after heart disease and cancer. Identification of individuals at risk for developing AD is imperative for testing therapeutic interventions. The objective of the study was to determine could diagnostics of AD from EMR data alone (without relying on diagnostic imaging) be significantly improved by applying clinical domain knowledge in data preprocessing and positive dataset selection rather than setting naïve filters.

METHODS

Data were extracted from the repository of heterogeneous ambulatory EMR data, collected from primary care medical offices all over the U.S. Medical domain knowledge was applied to build a positive dataset from data relevant to AD. Selected Clinically Relevant Positive (SCRP) datasets were used as inputs to a Long-Short-Term Memory (LSTM) Recurrent Neural Network (RNN) deep learning model to predict will the patient develop AD.

RESULTS

Risk scores prediction of AD using the drugs domain information in an SCRP AD dataset of 2,324 patients achieved high out-of-sample score - 0.98-0.99 Area Under the Precision-Recall Curve (AUPRC) when using 90% of SCRP dataset for training. AUPRC dropped to 0.89 when training the model using less than 1,500 cases from the SCRP dataset. The model was still significantly better than when using naïve dataset selection.

CONCLUSION

The LSTM RNN method that used data relevant to AD performed significantly better when learning from the SCRP dataset than when datasets were selected naïvely. The integration of qualitative medical knowledge for dataset selection and deep learning technology provided a mechanism for significant improvement of AD prediction. Accurate and early prediction of AD is significant in the identification of patients for clinical trials, which can possibly result in the discovery of new drugs for treatments of AD. Also, the contribution of the proposed predictions of AD is a better selection of patients who need imaging diagnostics for differential diagnosis of AD from other degenerative brain disorders.

摘要

背景与目的

阿尔茨海默病(AD)是最常见的痴呆类型,会严重影响一个人进行日常活动的能力。据估计,AD可能是老年人的第三大死因,仅次于心脏病和癌症。识别有患AD风险的个体对于测试治疗干预措施至关重要。本研究的目的是确定,通过在数据预处理和阳性数据集选择中应用临床领域知识,而不是设置简单的过滤器,仅从电子病历(EMR)数据(不依赖诊断成像)诊断AD的能力是否能得到显著提高。

方法

从美国各地基层医疗诊所收集的异构门诊EMR数据存储库中提取数据。应用医学领域知识从与AD相关的数据中构建阳性数据集。选定的临床相关阳性(SCRP)数据集被用作长短期记忆(LSTM)递归神经网络(RNN)深度学习模型的输入,以预测患者是否会患AD。

结果

在一个包含2324名患者的SCRP AD数据集中,使用药物领域信息对AD进行风险评分预测时,当使用90%的SCRP数据集进行训练时,样本外得分较高——精确召回率曲线下面积(AUPRC)为0.98 - 0.99。当使用SCRP数据集中少于1500个病例训练模型时,AUPRC降至0.89。该模型仍明显优于使用简单数据集选择时的情况。

结论

与使用简单选择的数据集相比,使用与AD相关数据的LSTM RNN方法在从SCRP数据集学习时表现明显更好。将定性医学知识用于数据集选择和深度学习技术相结合,为显著改善AD预测提供了一种机制。准确和早期预测AD对于识别临床试验患者具有重要意义,这可能会促成发现治疗AD的新药。此外,所提出的AD预测的作用在于能更好地选择需要进行成像诊断以将AD与其他退行性脑疾病进行鉴别诊断的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42aa/7502243/86de605c4090/gr1_lrg.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验