Hou Benjamin
Biomedical Image Analysis, Imperial College London, UK.
Biomed Opt Express. 2023 Jan 4;14(2):533-549. doi: 10.1364/BOE.477906. eCollection 2023 Feb 1.
Retina fundus imaging for diagnosing diabetic retinopathy (DR) is an efficient and patient-friendly modality, where many high-resolution images can be easily obtained for accurate diagnosis. With the advancements of deep learning, data-driven models may facilitate the process of high-throughput diagnosis especially in areas with less availability of certified human experts. Many datasets of DR already exist for training learning-based models. However, most are often unbalanced, do not have a large enough sample count, or both. This paper proposes a two-stage pipeline for generating photo-realistic retinal fundus images based on either artificially generated or free-hand drawn semantic lesion maps. The first stage uses a conditional StyleGAN to generate synthetic lesion maps based on a DR severity grade. The second stage then uses GauGAN to convert the synthetic lesion maps into high resolution fundus images. We evaluate the photo-realism of generated images using the Fréchet inception distance (FID), and show the efficacy of our pipeline through downstream tasks, such as; dataset augmentation for automatic DR grading and lesion segmentation.
用于诊断糖尿病视网膜病变(DR)的视网膜眼底成像,是一种高效且对患者友好的方式,通过它可以轻松获取许多高分辨率图像以进行准确诊断。随着深度学习的发展,数据驱动模型可能会推动高通量诊断过程,特别是在认证人类专家数量较少的地区。已经存在许多用于训练基于学习的模型的DR数据集。然而,大多数数据集往往不平衡,样本数量不够大,或者两者皆有。本文提出了一种两阶段流程,用于基于人工生成或手绘的语义病变图生成逼真的视网膜眼底图像。第一阶段使用条件StyleGAN根据DR严重程度等级生成合成病变图。第二阶段则使用GauGAN将合成病变图转换为高分辨率眼底图像。我们使用弗雷歇因距离(FID)评估生成图像的逼真度,并通过下游任务展示我们流程的有效性,如下游任务包括:用于自动DR分级和病变分割的数据集扩充。