Suppr超能文献

基于卷积神经网络和集成模型的 COVID-19 肺部 CT 感染检测

A hybrid CNN and ensemble model for COVID-19 lung infection detection on chest CT scans.

机构信息

Senior Machine Learning Engineer, VA Computing, Cairo, Egypt.

Department of Information Technology, Faculty of Computers and Informatics, Zagazig University, Zagazig, Sharkia Egypt.

出版信息

PLoS One. 2023 Mar 9;18(3):e0282608. doi: 10.1371/journal.pone.0282608. eCollection 2023.

Abstract

COVID-19 is highly infectious and causes acute respiratory disease. Machine learning (ML) and deep learning (DL) models are vital in detecting disease from computerized chest tomography (CT) scans. The DL models outperformed the ML models. For COVID-19 detection from CT scan images, DL models are used as end-to-end models. Thus, the performance of the model is evaluated for the quality of the extracted feature and classification accuracy. There are four contributions included in this work. First, this research is motivated by studying the quality of the extracted feature from the DL by feeding these extracted to an ML model. In other words, we proposed comparing the end-to-end DL model performance against the approach of using DL for feature extraction and ML for the classification of COVID-19 CT scan images. Second, we proposed studying the effect of fusing extracted features from image descriptors, e.g., Scale-Invariant Feature Transform (SIFT), with extracted features from DL models. Third, we proposed a new Convolutional Neural Network (CNN) to be trained from scratch and then compared to the deep transfer learning on the same classification problem. Finally, we studied the performance gap between classic ML models against ensemble learning models. The proposed framework is evaluated using a CT dataset, where the obtained results are evaluated using five different metrics The obtained results revealed that using the proposed CNN model is better than using the well-known DL model for the purpose of feature extraction. Moreover, using a DL model for feature extraction and an ML model for the classification task achieved better results in comparison to using an end-to-end DL model for detecting COVID-19 CT scan images. Of note, the accuracy rate of the former method improved by using ensemble learning models instead of the classic ML models. The proposed method achieved the best accuracy rate of 99.39%.

摘要

新型冠状病毒(COVID-19)具有高度传染性,可引发急性呼吸道疾病。机器学习(ML)和深度学习(DL)模型在从计算机断层扫描(CT)中检测疾病方面发挥着重要作用。DL 模型的表现优于 ML 模型。对于从 CT 扫描图像中检测 COVID-19,DL 模型被用作端到端模型。因此,评估模型的性能是为了评估提取特征的质量和分类准确性。本研究有四个贡献。首先,本研究的动机是通过研究从 DL 中提取特征的质量,将这些特征输入到 ML 模型中,从而研究从 DL 中提取特征的质量。换句话说,我们提出了将端到端 DL 模型性能与使用 DL 进行特征提取和 ML 进行 COVID-19 CT 扫描图像分类的方法进行比较。其次,我们提出了研究融合来自图像描述符(例如,尺度不变特征变换(SIFT))提取的特征与来自 DL 模型提取的特征的效果。第三,我们提出了一种新的卷积神经网络(CNN),从原始数据开始训练,然后与相同分类问题的深度迁移学习进行比较。最后,我们研究了经典 ML 模型与集成学习模型之间的性能差距。该框架使用 CT 数据集进行评估,使用五种不同的指标评估所得结果。所得结果表明,为了进行特征提取,使用我们提出的 CNN 模型优于使用著名的 DL 模型。此外,与使用端到端 DL 模型检测 COVID-19 CT 扫描图像相比,使用 DL 模型进行特征提取和 ML 模型进行分类任务可以获得更好的结果。值得注意的是,使用集成学习模型代替经典 ML 模型可以提高前者的准确率。所提出的方法达到了最佳的准确率 99.39%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a1a/9997961/ddf882092d56/pone.0282608.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验