Biomedical Engineering and Biomedical Sciences, University of Houston, Health 2, 4849 Calhoun Rd., Room 6014, Houston, TX, 77204-6064, USA.
Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW, 2522, Australia.
Commun Biol. 2021 Sep 17;4(1):1097. doi: 10.1038/s42003-021-02628-7.
Neural interfacing nerve fascicles along the splenic neurovascular plexus (SNVP) is needed to better understand the spleen physiology, and for selective neuromodulation of this major organ. However, their small size and anatomical location have proven to be a significant challenge. Here, we use a reduced liquid crystalline graphene oxide (rGO) fiber coated with platinum (Pt) as a super-flexible suture-like electrode to interface multiple SNVP. The Pt-rGO fibers work as a handover knot electrodes over the small SNVP, allowing sensitive recording from four splenic nerve terminal branches (SN 1-4), to uncover differential activity and axon composition among them. Here, the asymmetric defasciculation of the SN branches is revealed by electron microscopy, and the functional compartmentalization in spleen innervation is evidenced in response to hypoxia and pharmacological modulation of mean arterial pressure. We demonstrate that electrical stimulation of cervical and sub-diaphragmatic vagus nerve (VN), evokes activity in a subset of SN terminal branches, providing evidence for a direct VN control over the spleen. This notion is supported by adenoviral tract-tracing of SN branches, revealing an unconventional direct brain-spleen projection. High-performance Pt-rGO fiber electrodes, may be used for the fine neural modulation of other small neurovascular plexus at the point of entry of major organs as a bioelectronic medical alternative.
需要沿着脾脏神经血管丛 (SNVP) 对接神经束,以更好地了解脾脏生理学,并对这个主要器官进行选择性神经调节。然而,它们的体积小且解剖位置难以触及,这是一个重大挑战。在这里,我们使用涂覆有铂 (Pt) 的还原液晶氧化石墨烯 (rGO) 纤维作为超灵活缝线样电极来对接多个 SNVP。Pt-rGO 纤维在小的 SNVP 上充当交接结电极,能够从四个脾脏神经末梢分支 (SN1-4) 进行敏感记录,揭示它们之间的不同活动和轴突组成。在这里,通过电子显微镜揭示了 SN 分支的不对称去神经,并且在缺氧和平均动脉压药物调节下证明了脾脏神经支配中的功能分区化。我们证明了颈部和膈下迷走神经 (VN) 的电刺激会引发一部分 SN 末梢分支的活动,为 VN 对脾脏的直接控制提供了证据。这一观点得到了 SN 分支的腺相关病毒示踪的支持,揭示了一种非传统的大脑-脾脏直接投射。高性能 Pt-rGO 纤维电极可用于主要器官进入部位的其他小神经血管丛的精细神经调节,作为生物电子医学的替代方案。