Ospina Oscar, Soupir Alex, Fridley Brooke L
Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, FL, USA.
Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
Methods Mol Biol. 2023;2629:115-140. doi: 10.1007/978-1-0716-2986-4_7.
Recent developments in spatially resolved transcriptomics (ST) have resulted in a large number of studies characterizing the architecture of tissues, the spatial distribution of cell types, and their interactions. Furthermore, ST promises to enable the discovery of more accurate drug targets while also providing a better understanding of the etiology and evolution of complex diseases. The analysis of ST brings similar challenges as seen in other gene expression assays such as scRNA-seq; however, there is the additional spatial information that warrants the development of suitable algorithms for the quality control, preprocessing, visualization, and other discovery-enabling approaches (e.g., clustering, cell phenotyping). In this chapter, we review some of the existing algorithms to perform these analytical tasks and highlight some of the unmet analytical challenges in the analysis of ST data. Given the diversity of available ST technologies, we focus this chapter on the analysis of barcode-based RNA quantitation techniques.
空间分辨转录组学(ST)的最新进展催生了大量研究,这些研究对组织架构、细胞类型的空间分布及其相互作用进行了表征。此外,ST有望发现更准确的药物靶点,同时也能更好地理解复杂疾病的病因和演变。ST分析带来了与其他基因表达分析(如scRNA-seq)类似的挑战;然而,额外的空间信息使得有必要开发适用于质量控制、预处理、可视化以及其他促进发现的方法(如聚类、细胞表型分析)的算法。在本章中,我们回顾了一些用于执行这些分析任务的现有算法,并突出了ST数据分析中一些尚未解决的分析挑战。鉴于现有ST技术的多样性,本章将重点关注基于条形码的RNA定量技术的分析。