Suppr超能文献

二维和三维空间中多样化淋巴组织的无标记细胞分割。

Label-free cell segmentation of diverse lymphoid tissues in 2D and 3D.

机构信息

Department of Veterinary Medicine, Cambridge University, Madingley Road, Cambridge CB3 0ES, UK.

Department of Biomedical Engineering, Swansea University, Fabian Way, Crymlyn Burrows, Swansea SA1 8EN, Wales, UK.

出版信息

Cell Rep Methods. 2023 Feb 2;3(2):100398. doi: 10.1016/j.crmeth.2023.100398. eCollection 2023 Feb 27.

Abstract

Unlocking and quantifying fundamental biological processes through tissue microscopy requires accurate, segmentation of all cells imaged. Currently, achieving this is complex and requires exogenous fluorescent labels that occupy significant spectral bandwidth, increasing the duration and complexity of imaging experiments while limiting the number of channels remaining to address the study's objectives. We demonstrate that the excitation light reflected during routine confocal microscopy contains sufficient information to achieve accurate, label-free cell segmentation in 2D and 3D. This is achieved using a simple convolutional neural network trained to predict the probability that reflected light pixels belong to either nucleus, cytoskeleton, or background classifications. We demonstrate the approach across diverse lymphoid tissues and provide video tutorials demonstrating deployment in Python and MATLAB or via standalone software for Windows.

摘要

通过组织显微镜对基本生物过程进行解锁和量化,需要对所有成像细胞进行准确、分割。目前,实现这一目标非常复杂,需要外源性荧光标记物,这些标记物占据了很大的光谱带宽,增加了成像实验的时间和复杂性,同时限制了用于解决研究目标的通道数量。我们证明,在常规共聚焦显微镜反射的激发光中包含了足够的信息,可以实现 2D 和 3D 中准确的、无标记的细胞分割。这是通过一个简单的卷积神经网络来实现的,该网络经过训练可以预测反射光像素属于核、细胞骨架还是背景分类的概率。我们在各种淋巴组织中展示了这种方法,并提供了演示在 Python 和 MATLAB 中部署的视频教程,或提供了适用于 Windows 的独立软件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3190/10014308/897514088c0c/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验