Institut für Mikroelektronik Stuttgart (IMS CHIPS), Stuttgart D-70569, Germany.
Faculty Mechanical and Medical Engineering (MME), Institute for Microsystems Technology (iMST), Rottweil D-78628, Germany.
ACS Appl Mater Interfaces. 2023 Mar 29;15(12):16221-16231. doi: 10.1021/acsami.2c22513. Epub 2023 Mar 20.
Plasma-enhanced atomic layer deposition (PEALD) is utilized to improve the barrier properties of an organic chip-film patch (CFP) when it is used as an implant to prevent moisture and ions from migrating into the embedded electronic circuits. For this purpose, surface condition and material properties of eight modifications of AlO-TiO nanolaminates sequentially deposited on polyimide PI-2611 films are evaluated in detail. The effect of stress-induced warpage of the deposited AlO-TiO on the wafer level is calculated with the Stoney equation and reveals higher tensile stress values while increasing the thickness of AlO-TiO nanolaminates from 20 up to 80 nm. Contact angle measurement and atomic force microscopy are used to investigate the surface energy and wettability, as well as the surface morphology of polyimide-AlO-TiO interfaces. We show that plasma treatment of pristine polyimide leads to an enhanced adhesion force of the PEAL-deposited layer by a factor of 1.3. The water vapor transmission rate (WVTR) is determined by exposing the coated polyimide films to 85% humidity and 23 °C and yields down to 1.58 × 10 g(HO)/(m d). The data obtained are compared with alternative coating processes using the polymers parylene-C and benzocyclobutene (BCB). The latter shows higher WVTR values of 1.2 × 10 and 1.7 × 10 g(HO)/(m d) compared to the PEALD-PI-2611 systems, indicating lower barrier properties. Two AlO-TiO modifications with low WVTR values have been chosen for encapsulating the CFP substrates and exposing them in a long-time experiment to chemical and mechanical loads in a chamber filled with phosphate-buffered saline at 37 °C, pH 7.3, and a cyclically applied pressure of 160 mbar (∼120 mm Hg). The electrical leakage behavior of the CFP systems is measured and reveals reliable electrical long-term stability far beyond 11 months, highlighting the great potential of PEALD-encapsulated CFPs.
等离子体增强原子层沉积(PEALD)用于改善有机芯片薄膜补丁(CFP)的阻挡性能,当用作植入物时,可防止湿气和离子迁移到嵌入式电子电路中。为此,详细评估了依次沉积在聚酰亚胺 PI-2611 薄膜上的 8 种 AlO-TiO 纳米层结构的表面状态和材料性能。采用 Stoney 方程计算了沉积的 AlO-TiO 翘曲对晶圆级的影响,结果表明,随着 AlO-TiO 纳米层厚度从 20nm 增加到 80nm,拉伸应力值增加。接触角测量和原子力显微镜用于研究聚酰亚胺-AlO-TiO 界面的表面能和润湿性以及表面形貌。结果表明,对原始聚酰亚胺进行等离子体处理可将 PEAL 沉积层的粘附力提高 1.3 倍。通过将涂覆的聚酰亚胺薄膜暴露在 85%相对湿度和 23°C 下,测定水蒸气透过率(WVTR),结果降至 1.58×10 g(HO)/(m d)。将获得的数据与使用聚合物聚对二甲苯-C 和苯并环丁烯(BCB)的替代涂层工艺进行比较。后者的 WVTR 值分别为 1.2×10 和 1.7×10 g(HO)/(m d),高于 PEALD-PI-2611 系统,表明其阻隔性能较低。选择两种具有低 WVTR 值的 AlO-TiO 改性剂来封装 CFP 衬底,并在充满磷酸盐缓冲盐水的腔室中在 37°C、pH 值 7.3 和循环施加 160mbar(约 120mmHg)压力的条件下进行长期实验,以承受化学和机械负载。测量 CFP 系统的漏电行为,结果表明其具有可靠的长期电稳定性,远超 11 个月,突出了 PEALD 封装 CFP 的巨大潜力。