International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.
School of Integrated Circuits, East China Normal University, Shanghai 200241, China.
Proc Natl Acad Sci U S A. 2023 Mar 28;120(13):e2213650120. doi: 10.1073/pnas.2213650120. Epub 2023 Mar 20.
Misfit dislocations at a heteroepitaxial interface produce huge strain and, thus, have a significant impact on the properties of the interface. Here, we use scanning transmission electron microscopy to demonstrate a quantitative unit-cell-by-unit-cell mapping of the lattice parameters and octahedral rotations around misfit dislocations at the BiFeO/SrRuO interface. We find that huge strain field is achieved near dislocations, i.e., above 5% within the first three unit cells of the core, which is typically larger than that achieved from the regular epitaxy thin-film approach, thus significantly altering the magnitude and direction of the local ferroelectric dipole in BiFeO and magnetic moments in SrRuO near the interface. The strain field and, thus, the structural distortion can be further tuned by the dislocation type. Our atomic-scale study helps us to understand the effects of dislocations in this ferroelectricity/ferromagnetism heterostructure. Such defect engineering allows us to tune the local ferroelectric and ferromagnetic order parameters and the interface electromagnetic coupling, providing new opportunities to design nanosized electronic and spintronic devices.
位错失配位错会产生巨大的应变,因此对界面的性能有重大影响。在这里,我们使用扫描透射电子显微镜对位错失配位错处的 BiFeO/SrRuO 界面的晶格参数和八面体旋转进行了逐个晶胞的定量映射。我们发现,在离位错很近的地方(即在核心的前三个晶胞内)实现了巨大的应变场,即超过 5%,这通常比常规外延薄膜方法所实现的应变场大,从而显著改变了 BiFeO 中局部铁电极化偶极子的大小和方向以及 SrRuO 中近界面处的磁矩。应变场,从而可以通过位错类型进一步调节结构变形。我们的原子尺度研究有助于我们理解在这种铁电/铁磁异质结构中位错的作用。这种缺陷工程可以调节局部铁电和铁磁有序参数以及界面电磁耦合,为设计纳米级电子和自旋电子器件提供了新的机会。