Suppr超能文献

基于深度学习的机器人辅助微创食管切除术关键解剖结构识别。

Deep learning-based recognition of key anatomical structures during robot-assisted minimally invasive esophagectomy.

机构信息

Department of Surgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.

Department of Biomedical Engineering, Eindhoven University of Technology, Groene Loper 3, 5612 AE, Eindhoven, The Netherlands.

出版信息

Surg Endosc. 2023 Jul;37(7):5164-5175. doi: 10.1007/s00464-023-09990-z. Epub 2023 Mar 22.

Abstract

OBJECTIVE

To develop a deep learning algorithm for anatomy recognition in thoracoscopic video frames from robot-assisted minimally invasive esophagectomy (RAMIE) procedures using deep learning.

BACKGROUND

RAMIE is a complex operation with substantial perioperative morbidity and a considerable learning curve. Automatic anatomy recognition may improve surgical orientation and recognition of anatomical structures and might contribute to reducing morbidity or learning curves. Studies regarding anatomy recognition in complex surgical procedures are currently lacking.

METHODS

Eighty-three videos of consecutive RAMIE procedures between 2018 and 2022 were retrospectively collected at University Medical Center Utrecht. A surgical PhD candidate and an expert surgeon annotated the azygos vein and vena cava, aorta, and right lung on 1050 thoracoscopic frames. 850 frames were used for training of a convolutional neural network (CNN) to segment the anatomical structures. The remaining 200 frames of the dataset were used for testing the CNN. The Dice and 95% Hausdorff distance (95HD) were calculated to assess algorithm accuracy.

RESULTS

The median Dice of the algorithm was 0.79 (IQR = 0.20) for segmentation of the azygos vein and/or vena cava. A median Dice coefficient of 0.74 (IQR = 0.86) and 0.89 (IQR = 0.30) were obtained for segmentation of the aorta and lung, respectively. Inference time was 0.026 s (39 Hz). The prediction of the deep learning algorithm was compared with the expert surgeon annotations, showing an accuracy measured in median Dice of 0.70 (IQR = 0.19), 0.88 (IQR = 0.07), and 0.90 (0.10) for the vena cava and/or azygos vein, aorta, and lung, respectively.

CONCLUSION

This study shows that deep learning-based semantic segmentation has potential for anatomy recognition in RAMIE video frames. The inference time of the algorithm facilitated real-time anatomy recognition. Clinical applicability should be assessed in prospective clinical studies.

摘要

目的

使用深度学习为机器人辅助微创食管切除术(RAMIE)手术的胸腔镜视频帧开发解剖结构识别的深度学习算法。

背景

RAMIE 是一种复杂的手术,具有较高的围手术期发病率和相当大的学习曲线。自动解剖结构识别可以改善手术定位和解剖结构的识别,并可能有助于降低发病率或学习曲线。目前缺乏关于复杂手术中解剖结构识别的研究。

方法

2018 年至 2022 年期间,乌得勒支大学医学中心回顾性收集了 83 例连续的 RAMIE 手术视频。一名外科博士候选人及一位专家外科医生对 1050 个胸腔镜帧中的奇静脉和腔静脉、主动脉和右肺进行了注释。850 个帧用于训练卷积神经网络(CNN)以分割解剖结构。数据集的其余 200 个帧用于测试 CNN。计算 Dice 和 95%Hausdorff 距离(95HD)以评估算法的准确性。

结果

该算法对奇静脉和/或腔静脉分割的中位数 Dice 为 0.79(IQR=0.20)。主动脉和肺的分割中位数 Dice 系数分别为 0.74(IQR=0.86)和 0.89(IQR=0.30)。推理时间为 0.026s(39Hz)。深度学习算法的预测与专家外科医生的注释进行了比较,以中位数 Dice 表示的准确性分别为 0.70(IQR=0.19)、0.88(IQR=0.07)和 0.90(IQR=0.10),用于腔静脉和/或奇静脉、主动脉和肺。

结论

本研究表明,基于深度学习的语义分割在 RAMIE 视频帧中的解剖结构识别具有潜力。算法的推理时间有利于实时解剖结构识别。应在前瞻性临床研究中评估其临床适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/673a/10322962/32aee30d793f/464_2023_9990_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验