Department of Molecular, Cellular and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan, Ann Arbor, United States.
The Molecular, Cellular and Developmental Biology Graduate Program, The University of Michigan, Ann Arbor, United States.
Elife. 2023 Mar 23;12:e83979. doi: 10.7554/eLife.83979.
Diet profoundly influences brain physiology, but how metabolic information is transmuted into neural activity and behavior changes remains elusive. Here, we show that the metabolic enzyme O-GlcNAc Transferase (OGT) moonlights on the chromatin of the gustatory neurons to instruct changes in chromatin accessibility and transcription that underlie sensory adaptations to a high-sugar diet. OGT works synergistically with the Mitogen Activated Kinase/Extracellular signal Regulated Kinase (MAPK/ERK) rolled and its effector stripe (also known as EGR2 or Krox20) to integrate activity information. OGT also cooperates with the epigenetic silencer Polycomb Repressive Complex 2.1 (PRC2.1) to decrease chromatin accessibility and repress transcription in the high-sugar diet. This integration of nutritional and activity information changes the taste neurons' responses to sugar and the flies' ability to sense sweetness. Our findings reveal how nutrigenomic signaling generates neural activity and behavior in response to dietary changes in the sensory neurons.
饮食深刻地影响大脑生理学,但代谢信息如何转化为神经活动和行为变化仍然难以捉摸。在这里,我们表明代谢酶 O-连接的 N-乙酰葡萄糖胺转移酶(OGT)在味觉神经元的染色质上兼职,指导染色质可及性和转录的变化,这些变化是对高糖饮食的感官适应的基础。OGT 与丝裂原激活的蛋白激酶/细胞外信号调节激酶(MAPK/ERK)及其效应带(也称为 EGR2 或 Krox20)协同作用,整合活性信息。OGT 还与表观遗传沉默多梳抑制复合物 2.1(PRC2.1)合作,降低染色质的可及性,并在高糖饮食中抑制转录。这种营养和活动信息的整合改变了味觉神经元对糖的反应以及苍蝇感知甜味的能力。我们的发现揭示了营养基因组信号如何在感觉神经元中产生神经活动和行为,以响应饮食的变化。