Vahid Milad R, Kurlovs Andre H, Andreani Tommaso, Augé Franck, Olfati-Saber Reza, de Rinaldis Emanuele, Rapaport Franck, Savova Virginia
Sanofi R&D Data and Data Science, Artificial Intelligence & Deep Analytics, Omics Data Science, 450 Water Street, Cambridge, MA 02142, USA.
Sanofi R&D, Precision Medicine and Computational Biology, 350 Water Street, Cambridge, MA 02142, USA.
NAR Genom Bioinform. 2023 Mar 23;5(1):lqad030. doi: 10.1093/nargab/lqad030. eCollection 2023 Mar.
Most cell-cell interactions and crosstalks are mediated by ligand-receptor interactions. The advent of single-cell RNA-sequencing (scRNA-seq) techniques has enabled characterizing tissue heterogeneity at single-cell level. In the past few years, several methods have been developed to study ligand-receptor interactions at cell type level using scRNA-seq data. However, there is still no easy way to query the activity of a specific user-defined signaling pathway in a targeted way or to map the interactions of the same subunit with different ligands as part of different receptor complexes. Here, we present DiSiR, a fast and easy-to-use permutation-based software framework to investigate how individual cells are interacting with each other by analyzing signaling pathways of multi-subunit ligand-activated receptors from scRNA-seq data, not only for available curated databases of ligand-receptor interactions, but also for interactions that are not listed in these databases. We show that, when utilized to infer ligand-receptor interactions from both simulated and real datasets, DiSiR outperforms other well-known permutation-based methods, e.g. CellPhoneDB and ICELLNET. Finally, to demonstrate DiSiR's utility in exploring data and generating biologically relevant hypotheses, we apply it to COVID lung and rheumatoid arthritis (RA) synovium scRNA-seq datasets and highlight potential differences between inflammatory pathways at cell type level for control versus disease samples.
大多数细胞间的相互作用和串扰是由配体-受体相互作用介导的。单细胞RNA测序(scRNA-seq)技术的出现使得在单细胞水平上表征组织异质性成为可能。在过去的几年里,已经开发了几种方法来利用scRNA-seq数据在细胞类型水平上研究配体-受体相互作用。然而,仍然没有一种简单的方法来有针对性地查询特定用户定义的信号通路的活性,或者将同一亚基与不同配体的相互作用映射为不同受体复合物的一部分。在这里,我们展示了DiSiR,这是一个快速且易于使用的基于排列的软件框架,用于通过分析来自scRNA-seq数据的多亚基配体激活受体的信号通路来研究单个细胞之间是如何相互作用的,不仅适用于现有的配体-受体相互作用的策划数据库,也适用于这些数据库中未列出的相互作用。我们表明,当用于从模拟和真实数据集中推断配体-受体相互作用时,DiSiR优于其他著名的基于排列的方法,例如CellPhoneDB和ICELLNET。最后,为了证明DiSiR在探索数据和生成生物学相关假设方面的实用性,我们将其应用于COVID肺和类风湿性关节炎(RA)滑膜scRNA-seq数据集,并突出了对照样本与疾病样本在细胞类型水平上炎症通路之间的潜在差异。