Suppr超能文献

人工智能在肺结核诊断及耐药性预测中的应用

The Application of Artificial Intelligence in the Diagnosis and Drug Resistance Prediction of Pulmonary Tuberculosis.

作者信息

Liang Shufan, Ma Jiechao, Wang Gang, Shao Jun, Li Jingwei, Deng Hui, Wang Chengdi, Li Weimin

机构信息

Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China.

Precision Medicine Key Laboratory of Sichuan Province, Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Front Med (Lausanne). 2022 Jul 28;9:935080. doi: 10.3389/fmed.2022.935080. eCollection 2022.

Abstract

With the increasing incidence and mortality of pulmonary tuberculosis, in addition to tough and controversial disease management, time-wasting and resource-limited conventional approaches to the diagnosis and differential diagnosis of tuberculosis are still awkward issues, especially in countries with high tuberculosis burden and backwardness. In the meantime, the climbing proportion of drug-resistant tuberculosis poses a significant hazard to public health. Thus, auxiliary diagnostic tools with higher efficiency and accuracy are urgently required. Artificial intelligence (AI), which is not new but has recently grown in popularity, provides researchers with opportunities and technical underpinnings to develop novel, precise, rapid, and automated implements for pulmonary tuberculosis care, including but not limited to tuberculosis detection. In this review, we aimed to introduce representative AI methods, focusing on deep learning and radiomics, followed by definite descriptions of the state-of-the-art AI models developed using medical images and genetic data to detect pulmonary tuberculosis, distinguish the infection from other pulmonary diseases, and identify drug resistance of tuberculosis, with the purpose of assisting physicians in deciding the appropriate therapeutic schedule in the early stage of the disease. We also enumerated the challenges in maximizing the impact of AI in this field such as generalization and clinical utility of the deep learning models.

摘要

随着肺结核发病率和死亡率的不断上升,除了棘手且存在争议的疾病管理外,耗时且资源有限的传统结核病诊断和鉴别诊断方法仍是棘手问题,尤其是在结核病负担沉重且落后的国家。与此同时,耐药结核病比例的攀升对公众健康构成重大危害。因此,迫切需要更高效率和准确性的辅助诊断工具。人工智能(AI)虽并非新鲜事物,但最近日益受到关注,它为研究人员提供了机会和技术支撑,以开发用于肺结核防治的新颖、精确、快速且自动化的工具,包括但不限于结核病检测。在本综述中,我们旨在介绍具有代表性的人工智能方法,重点关注深度学习和放射组学,随后详细描述利用医学图像和基因数据开发的最先进人工智能模型,这些模型用于检测肺结核、区分感染与其他肺部疾病以及识别结核病的耐药性,目的是协助医生在疾病早期确定合适的治疗方案。我们还列举了在最大化人工智能在该领域影响方面的挑战,如深度学习模型的泛化能力和临床实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05c9/9366014/b5e4f2655c4f/fmed-09-935080-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验