Suppr超能文献

自动伤口图像分割:通过主动半监督学习从人类到宠物的迁移学习

Automated Wound Image Segmentation: Transfer Learning from Human to Pet via Active Semi-Supervised Learning.

作者信息

Buschi Daniele, Curti Nico, Cola Veronica, Carlini Gianluca, Sala Claudia, Dall'Olio Daniele, Castellani Gastone, Pizzi Elisa, Del Magno Sara, Foglia Armando, Giunti Massimo, Pisoni Luciano, Giampieri Enrico

机构信息

Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy.

Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell'Emilia, Italy.

出版信息

Animals (Basel). 2023 Mar 7;13(6):956. doi: 10.3390/ani13060956.

Abstract

Wound management is a fundamental task in standard clinical practice. Automated solutions already exist for humans, but there is a lack of applications regarding wound management for pets. Precise and efficient wound assessment is helpful to improve diagnosis and to increase the effectiveness of treatment plans for chronic wounds. In this work, we introduced a novel pipeline for the segmentation of pet wound images. Starting from a model pre-trained on human-based wound images, we applied a combination of transfer learning (TL) and active semi-supervised learning (ASSL) to automatically label a large dataset. Additionally, we provided a guideline for future applications of TL+ASSL training strategy on image datasets. We compared the effectiveness of the proposed training strategy, monitoring the performance of an EfficientNet-b3 U-Net model against the lighter solution provided by a MobileNet-v2 U-Net model. We obtained 80% of correctly segmented images after five rounds of ASSL training. The EfficientNet-b3 U-Net model significantly outperformed the MobileNet-v2 one. We proved that the number of available samples is a key factor for the correct usage of ASSL training. The proposed approach is a viable solution to reduce the time required for the generation of a segmentation dataset.

摘要

伤口管理是标准临床实践中的一项基本任务。针对人类的自动化解决方案已经存在,但缺乏针对宠物伤口管理的应用程序。精确而高效的伤口评估有助于改善诊断并提高慢性伤口治疗方案的有效性。在这项工作中,我们引入了一种用于分割宠物伤口图像的新型流程。从在基于人类的伤口图像上预训练的模型开始,我们应用迁移学习(TL)和主动半监督学习(ASSL)的组合来自动标记一个大型数据集。此外,我们为TL+ASSL训练策略在图像数据集上的未来应用提供了指导方针。我们比较了所提出的训练策略的有效性,监测了EfficientNet-b3 U-Net模型相对于MobileNet-v2 U-Net模型提供的更轻量级解决方案的性能。经过五轮ASSL训练后,我们获得了80%的正确分割图像。EfficientNet-b3 U-Net模型明显优于MobileNet-v2模型。我们证明了可用样本数量是正确使用ASSL训练的关键因素。所提出的方法是减少分割数据集生成所需时间的可行解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db8f/10044392/bc0d02edd348/animals-13-00956-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验