Suppr超能文献

用于腹腔镜手术语义分割和事件检测的多任务卷积神经网络

A Multi-Task Convolutional Neural Network for Semantic Segmentation and Event Detection in Laparoscopic Surgery.

作者信息

Marullo Giorgia, Tanzi Leonardo, Ulrich Luca, Porpiglia Francesco, Vezzetti Enrico

机构信息

Department of Management, Production, and Design Engineering, Polytechnic University of Turin, 10129 Turin, Italy.

Division of Urology, Department of Oncology, School of Medicine, University of Turin, 10124 Turin, Italy.

出版信息

J Pers Med. 2023 Feb 25;13(3):413. doi: 10.3390/jpm13030413.

Abstract

The current study presents a multi-task end-to-end deep learning model for real-time blood accumulation detection and tools semantic segmentation from a laparoscopic surgery video. Intraoperative bleeding is one of the most problematic aspects of laparoscopic surgery. It is challenging to control and limits the visibility of the surgical site. Consequently, prompt treatment is required to avoid undesirable outcomes. This system exploits a shared backbone based on the encoder of the U-Net architecture and two separate branches to classify the blood accumulation event and output the segmentation map, respectively. Our main contribution is an efficient multi-task approach that achieved satisfactory results during the test on surgical videos, although trained with only RGB images and no other additional information. The proposed multi-tasking convolutional neural network did not employ any pre- or postprocessing step. It achieved a Dice Score equal to 81.89% for the semantic segmentation task and an accuracy of 90.63% for the event detection task. The results demonstrated that the concurrent tasks were properly combined since the common backbone extracted features proved beneficial for tool segmentation and event detection. Indeed, active bleeding usually happens when one of the instruments closes or interacts with anatomical tissues, and it decreases when the aspirator begins to remove the accumulated blood. Even if different aspects of the presented methodology could be improved, this work represents a preliminary attempt toward an end-to-end multi-task deep learning model for real-time video understanding.

摘要

当前的研究提出了一种多任务端到端深度学习模型,用于从腹腔镜手术视频中实时检测血液积聚并进行工具语义分割。术中出血是腹腔镜手术中最棘手的问题之一。控制出血并限制手术部位的视野具有挑战性。因此,需要及时治疗以避免不良后果。该系统利用基于U-Net架构编码器的共享主干和两个独立的分支,分别对血液积聚事件进行分类并输出分割图。我们的主要贡献是一种高效的多任务方法,尽管仅使用RGB图像进行训练且没有其他额外信息,但在手术视频测试中取得了令人满意的结果。所提出的多任务卷积神经网络没有采用任何预处理或后处理步骤。在语义分割任务中,它的骰子系数(Dice Score)达到了81.89%,在事件检测任务中的准确率为90.63%。结果表明,由于共享主干提取的特征被证明对工具分割和事件检测有益,所以并发任务得到了恰当的结合。实际上,当其中一个器械闭合或与解剖组织相互作用时,通常会发生活动性出血,而当吸引器开始清除积聚的血液时,出血会减少。即使所提出方法的不同方面可以改进,但这项工作代表了朝着用于实时视频理解的端到端多任务深度学习模型迈出的初步尝试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57f8/10054284/1e9862cc3447/jpm-13-00413-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验