Suppr超能文献

基于六色多重免疫荧光 panel 的深度学习计算癌症评分,用于识别人类肝细胞癌区域。

A Deep-Learning-Computed Cancer Score for the Identification of Human Hepatocellular Carcinoma Area Based on a Six-Colour Multiplex Immunofluorescence Panel.

机构信息

Department of General, Visceral and Transplant Surgery, University Hospital RWTH Aachen, 52074 Aachen, Germany.

Forschungs-und Entwicklungsgesellschaft FEG Textiltechnik, 52070 Aachen, Germany.

出版信息

Cells. 2023 Apr 2;12(7):1074. doi: 10.3390/cells12071074.

Abstract

Liver cancer is one of the most frequently diagnosed and fatal cancers worldwide, with hepatocellular carcinoma (HCC) being the most common primary liver cancer. Hundreds of studies involving thousands of patients have now been analysed across different cancer types, including HCC, regarding the effects of immune infiltrates on the prognosis of cancer patients. However, for these analyses, an unambiguous delineation of the cancer area is paramount, which is difficult due to the strong heterogeneity and considerable inter-operator variability induced by qualitative visual assessment and manual assignment. Nowadays, however, multiplex analyses allow the simultaneous evaluation of multiple protein markers, which, in conjunction with recent machine learning approaches, may offer great potential for the objective, enhanced identification of cancer areas with further in situ analysis of prognostic immune parameters. In this study, we, therefore, used an exemplary five-marker multiplex immunofluorescence panel of commonly studied markers for prognosis (CD3 T, CD4 T helper, CD8 cytotoxic T, FoxP3 regulatory T, and PD-L1) and DAPI to assess which analytical approach is best suited to combine morphological and immunohistochemical data into a cancer score to identify the cancer area that best matches an independent pathologist's assignment. For each cell, a total of 68 individual cell features were determined, which were used as input for 4 different approaches for computing a cancer score: a correlation-based selection of individual cell features, a MANOVA-based selection of features, a multilayer perceptron, and a convolutional neural network (a U-net). Accuracy was used to evaluate performance. With a mean accuracy of 75%, the U-net was best capable of identifying the cancer area. Although individual cell features showed a strong heterogeneity between patients, the spatial representations obtained with the computed cancer scores delineate HCC well from non-cancer liver tissues. Future analyses with larger sample sizes will help to improve the model and enable direct, in-depth investigations of prognostic parameters, ultimately enabling precision medicine.

摘要

肝癌是全球最常见的癌症之一,其中肝细胞癌(HCC)是最常见的原发性肝癌。现在已经对包括 HCC 在内的数百项涉及数千名患者的癌症类型的研究进行了分析,以评估免疫浸润对癌症患者预后的影响。然而,对于这些分析,明确界定癌症区域至关重要,但由于定性视觉评估和手动分配引起的强烈异质性和相当大的操作者间变异性,这是困难的。然而,如今的多重分析允许同时评估多个蛋白质标志物,结合最近的机器学习方法,可能为客观、增强识别癌症区域提供巨大潜力,并进一步对预后免疫参数进行原位分析。因此,在这项研究中,我们使用了一个示例的五标志物多重免疫荧光面板,该面板包含了常用于预后评估的标志物(CD3 T、CD4 T 辅助、CD8 细胞毒性 T、FoxP3 调节性 T 和 PD-L1)和 DAPI,以评估哪种分析方法最适合将形态学和免疫组织化学数据结合到癌症评分中,以识别与独立病理学家分配最匹配的癌症区域。对于每个细胞,总共确定了 68 个单个细胞特征,这些特征被用作计算癌症评分的 4 种不同方法的输入:基于相关性的单个细胞特征选择、基于 MANOVA 的特征选择、多层感知机和卷积神经网络(U-net)。使用准确性来评估性能。U-net 的平均准确性为 75%,能够最好地识别癌症区域。尽管单个细胞特征在患者之间表现出很强的异质性,但通过计算得出的癌症评分的空间表示可以很好地区分 HCC 和非癌性肝组织。未来的分析需要更大的样本量,以帮助改进模型,并能够直接深入研究预后参数,最终实现精准医学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54fc/10093209/56728f0ccffc/cells-12-01074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验