Suppr超能文献

基于人工智能的小波和堆叠深度学习架构,用于从胸部X光图像中检测冠状病毒(COVID-19)。

AI-based wavelet and stacked deep learning architecture for detecting coronavirus (COVID-19) from chest X-ray images.

作者信息

Soundrapandiyan Rajkumar, Naidu Himanshu, Karuppiah Marimuthu, Maheswari M, Poonia Ramesh Chandra

机构信息

School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632014, India.

ServiceNow, Hyderabad, Telangana 500081, India.

出版信息

Comput Electr Eng. 2023 May;108:108711. doi: 10.1016/j.compeleceng.2023.108711. Epub 2023 Apr 11.

Abstract

A novel coronavirus (COVID-19), belonging to a family of severe acute respiratory syndrome coronavirus 2 (SARs-CoV-2), was identified in Wuhan city, Hubei, China, in November 2019. The disease had already infected more than 681.529665 million people as of March 13, 2023. Hence, early detection and diagnosis of COVID-19 are essential. For this purpose, radiologists use medical images such as X-ray and computed tomography (CT) images for the diagnosis of COVID-19. It is very difficult for researchers to help radiologists to do automatic diagnoses by using traditional image processing methods. Therefore, a novel artificial intelligence (AI)-based deep learning model to detect COVID-19 from chest X-ray images is proposed. The proposed work uses a wavelet and stacked deep learning architecture (ResNet50, VGG19, Xception, and DarkNet19) named WavStaCovNet-19 to detect COVID-19 from chest X-ray images automatically. The proposed work has been tested on two publicly available datasets and achieved an accuracy of 94.24% and 96.10% on 4 classes and 3 classes, respectively. From the experimental results, we believe that the proposed work can surely be useful in the healthcare domain to detect COVID-19 with less time and cost, and with higher accuracy.

摘要

2019年11月,在中国湖北省武汉市发现了一种新型冠状病毒(COVID-19),它属于严重急性呼吸综合征冠状病毒2(SARS-CoV-2)家族。截至2023年3月13日,该疾病已感染超过6.81529665亿人。因此,早期检测和诊断COVID-19至关重要。为此,放射科医生使用X射线和计算机断层扫描(CT)图像等医学图像来诊断COVID-19。研究人员很难通过传统图像处理方法帮助放射科医生进行自动诊断。因此,提出了一种基于新型人工智能(AI)的深度学习模型,用于从胸部X射线图像中检测COVID-19。所提出的工作使用了一种名为WavStaCovNet-19的小波和堆叠深度学习架构(ResNet50、VGG19、Xception和DarkNet1),以自动从胸部X射线图像中检测COVID-19。所提出的工作在两个公开可用的数据集上进行了测试,在4类和3类上分别达到了94.24%和96.10%的准确率。从实验结果来看,我们相信所提出的工作肯定有助于医疗领域以更少的时间和成本、更高的准确率检测COVID-19。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/206b/10086108/cbe5b0990786/ga1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验