Suppr超能文献

高通量分析硬骨鱼类视网膜光谱域光相干断层成像的新型分割算法。

Novel segmentation algorithm for high-throughput analysis of spectral domain-optical coherence tomography imaging of teleost retinas.

机构信息

Department of Computer Science, Memorial University, St. John's, A1B 3X5, NL, Canada.

Faculty of Medicine, Memorial University, St. John's, A1B 3V6, NL, Canada.

出版信息

Mol Vis. 2022 Dec 31;28:492-499. eCollection 2022.

Abstract

Spectral domain-optical coherence tomography (SD-OCT) has become an essential tool for assessing ocular tissues in live subjects and conducting research on ocular development, health, and disease. The processing of SD-OCT images, particularly those from non-mammalian species, is a labor-intensive manual process due to a lack of automated analytical programs. This paper describes the development and implementation of a novel computer algorithm for the quantitative analysis of SD-OCT images of live teleost eyes. Automated segmentation processing of SD-OCT images of retinal layers was developed using a novel algorithm based on thresholding. The algorithm measures retinal thickness characteristics in a large volume of imaging data of teleost ocular structures in a short time, providing increased accuracy and repeatability of SD-OCT image analysis over manual measurements. The algorithm also generates hundreds of retinal thickness measurements per image for a large number of images for a given dataset. Meanwhile, heat mapping software that plots SD-OCT image measurements as a color gradient was also created. This software directly converts the measurements of each processed image to represent changes in thickness across the whole retinal scan. It also enables 2D and 3D visualization of retinal thickness across the scan, facilitating specimen comparison and localization of areas of interest. The study findings showed that the novel algorithm is more accurate, reliable, and repeatable than manual SD-OCT analysis. The adaptability of the algorithm makes it potentially suitable for analyzing SD-OCT scans of other non-mammalian species.

摘要

光谱域光学相干断层扫描(SD-OCT)已成为评估活体眼部组织以及进行眼部发育、健康和疾病研究的重要工具。由于缺乏自动化分析程序,SD-OCT 图像的处理,尤其是非哺乳动物物种的图像处理,是一项劳动密集型的手动过程。本文介绍了一种用于活体硬骨鱼眼睛的 SD-OCT 图像定量分析的新型计算机算法的开发和实现。使用基于阈值的新型算法对视网膜层的 SD-OCT 图像进行了自动分割处理。该算法可在短时间内测量大量硬骨鱼眼部结构成像数据中的视网膜厚度特征,与手动测量相比,提高了 SD-OCT 图像分析的准确性和可重复性。该算法还可以为给定数据集的大量图像生成每幅图像的数百个视网膜厚度测量值。同时,还创建了一种热图软件,可将 SD-OCT 图像测量值绘制为颜色梯度。该软件直接将每个处理后的图像的测量值转换为整个视网膜扫描的厚度变化表示。它还可以实现视网膜厚度在扫描中的 2D 和 3D 可视化,便于标本比较和感兴趣区域的定位。研究结果表明,该新型算法比手动 SD-OCT 分析更准确、可靠和可重复。该算法的适应性使其有可能适用于分析其他非哺乳动物物种的 SD-OCT 扫描。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/698c/10115363/308c762d3e31/mv-v28-492-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验