Suppr超能文献

自诱导核壳结构InAlN纳米棒:通过从头算模拟揭示其形成与稳定性

Self-Induced Core-Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations.

作者信息

Alves Machado Filho Manoel, Hsiao Ching-Lien, Dos Santos Renato Batista, Hultman Lars, Birch Jens, Gueorguiev Gueorgui K

机构信息

Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE 581 83Linköping, Sweden.

Universidade Maurício de Nassau - UNINASSAU - Unidade Vitória da Conquista, 45020-750Vitória da Conquista, Bahia, Brazil.

出版信息

ACS Nanosci Au. 2022 Oct 28;3(1):84-93. doi: 10.1021/acsnanoscienceau.2c00041. eCollection 2023 Feb 15.

Abstract

By addressing precursor prevalence and energetics using the DFT-based synthetic growth concept (SGC), the formation mechanism of self-induced InAlN core-shell nanorods (NRs) synthesized by reactive magnetron sputter epitaxy (MSE) is explored. The characteristics of In- and Al-containing precursor species are evaluated considering the thermal conditions at a typical NR growth temperature of around 700 °C. The cohesive and dissociation energies of In-containing precursors are consistently lower than those of their Al-containing counterparts, indicating that In-containing precursors are more weakly bonded and more prone to dissociation. Therefore, In-containing species are expected to exhibit lower abundance in the NR growth environment. At increased growth temperatures, the depletion of In-based precursors is even more pronounced. A distinctive imbalance in the incorporation of Al- and In-containing precursor species (namely, AlN/AlN, AlN/AlN , AlN/AlN , and Al/Al vs InN/InN, InN/InN , InN/InN , and In/In ) is found at the growing edge of the NR side surfaces, which correlates well with the experimentally obtained core-shell structure as well as with the distinctive In-rich core and vice versa for the Al-rich shell. The performed modeling indicates that the formation of the core-shell structure is substantially driven by the precursors' abundance and their preferential bonding onto the growing edge of the nanoclusters/islands initiated by phase separation from the beginning of the NR growth. The cohesive energies and the band gaps of the NRs show decreasing trends with an increment in the In concentration of the NRs' core and with an increment in the overall thickness (diameter) of the NRs. These results reveal the energy and electronic reasons behind the limited growth (up to ∼25% of In atoms of all metal atoms, i.e., In Al N, ∼ 0.25) in the NR core and may be qualitatively perceived as a limiting factor for the thickness of the grown NRs (typically <50 nm).

摘要

通过使用基于密度泛函理论(DFT)的合成生长概念(SGC)来研究前驱体的丰度和能量学,探索了通过反应磁控溅射外延(MSE)合成的自诱导InAlN核壳纳米棒(NRs)的形成机制。考虑到在典型的NR生长温度约700°C下的热条件,评估了含In和Al的前驱体物种的特性。含In前驱体的内聚能和解离能始终低于其含Al对应物,这表明含In前驱体的键合较弱,更容易解离。因此,预计含In物种在NR生长环境中的丰度较低。在升高的生长温度下,基于In的前驱体的消耗更加明显。在NR侧面的生长边缘发现了含Al和含In前驱体物种掺入的明显不平衡(即,AlN/AlN、AlN/AlN 、AlN/AlN 以及Al/Al 与InN/InN、InN/InN 、InN/InN 以及In/In ),这与实验获得的核壳结构以及独特的富In核很好地相关,反之对于富Al壳也是如此。所进行的建模表明,核壳结构的形成主要由前驱体的丰度及其在NR生长开始时由相分离引发的纳米团簇/岛的生长边缘上的优先键合驱动。NRs的内聚能和带隙随着NRs核中In浓度的增加以及NRs整体厚度(直径)的增加而呈现下降趋势。这些结果揭示了NR核中有限生长(所有金属原子中In原子最多约25%,即In Al N, ∼ 0.25)背后的能量和电子原因,并且可以定性地视为生长的NRs厚度(通常<50 nm)的限制因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ebc6/10125348/5a5cea09df4a/ng2c00041_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验