Suppr超能文献

用于使用胸部X光图像检测新冠肺炎的深度COVNet模型。

DeepCOVNet Model for COVID-19 Detection Using Chest X-Ray Images.

作者信息

Bhattacharjee Vandana, Priya Ankita, Kumari Nandini, Anwar Shamama

机构信息

Birla Institute of Technology Mesra, Ranchi, 835215 India.

Department of Data Science & Computer Application, Manipal Institute of Technology, Manipal, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India.

出版信息

Wirel Pers Commun. 2023;130(2):1399-1416. doi: 10.1007/s11277-023-10336-0. Epub 2023 Apr 10.

Abstract

COVID-19 is an epidemic disease that has threatened all the people at worldwide scale and eventually became a pandemic It is a crucial task to differentiate COVID-19-affected patients from healthy patient populations. The need for technology enabled solutions is pertinent and this paper proposes a deep learning model for detection of COVID-19 using Chest X-Ray (CXR) images. In this research work, we provide insights on how to build robust deep learning based models for COVID-19 CXR image classification from Normal and Pneumonia affected CXR images. We contribute a methodical escort on preparation of data to produce a robust deep learning model. The paper prepared datasets by refactoring, using images from several datasets for ameliorate training of deep model. These recently published datasets enable us to build our own model and compare by using pre-trained models. The proposed experiments show the ability to work effectively to classify COVID-19 patients utilizing CXR. The empirical work, which uses a 3 convolutional layer based Deep Neural Network called "DeepCOVNet" to classify CXR images into 3 classes: COVID-19, Normal and Pneumonia cases, yielded an accuracy of 96.77% and a F1-score of 0.96 on two different combination of datasets.

摘要

新冠病毒病是一种在全球范围内威胁所有人的流行病,最终演变成了大流行病。将感染新冠病毒病的患者与健康人群区分开来是一项至关重要的任务。对技术支持的解决方案的需求是相关的,本文提出了一种使用胸部X光(CXR)图像检测新冠病毒病的深度学习模型。在这项研究工作中,我们提供了关于如何从正常和受肺炎影响的CXR图像中构建用于新冠病毒病CXR图像分类的强大深度学习模型的见解。我们为准备数据以生成强大的深度学习模型提供了一个有条理的指导。本文通过重构来准备数据集,使用来自多个数据集的图像来改进深度模型的训练。这些最近发布的数据集使我们能够构建自己的模型,并通过使用预训练模型进行比较。所提出的实验表明,利用CXR对新冠病毒病患者进行分类具有有效工作的能力。实证工作使用一个基于3个卷积层的深度神经网络“DeepCOVNet”将CXR图像分为3类:新冠病毒病、正常和肺炎病例,在两个不同的数据集组合上产生了96.77%的准确率和0.96的F1分数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ec66/10088652/af1ab92a385c/11277_2023_10336_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验