Suppr超能文献

用于使用胸部X光进行COVID-19疫情筛查的浅层卷积神经网络

Shallow Convolutional Neural Network for COVID-19 Outbreak Screening Using Chest X-rays.

作者信息

Mukherjee Himadri, Ghosh Subhankar, Dhar Ankita, Obaidullah Sk Md, Santosh K C, Roy Kaushik

机构信息

Department of Computer Science, West Bengal State University, Kolkata, India.

CVPR Unit, Indian Statistical Institute, Kolkata, India.

出版信息

Cognit Comput. 2021 Feb 5:1-14. doi: 10.1007/s12559-020-09775-9.

Abstract

Among radiological imaging data, Chest X-rays (CXRs) are of great use in observing COVID-19 manifestations. For mass screening, using CXRs, a computationally efficient AI-driven tool is the must to detect COVID-19-positive cases from non-COVID ones. For this purpose, we proposed a light-weight Convolutional Neural Network (CNN)-tailored shallow architecture that can automatically detect COVID-19-positive cases using CXRs, with no false negatives. The shallow CNN-tailored architecture was designed with fewer parameters as compared to other deep learning models. The shallow CNN-tailored architecture was validated using 321 COVID-19-positive CXRs. In addition to COVID-19-positive cases, another set of non-COVID-19 5856 cases (publicly available, source: Kaggle) was taken into account, consisting of normal, viral, and bacterial pneumonia cases. In our experimental tests, to avoid possible bias, 5-fold cross-validation was followed, and both balanced and imbalanced datasets were used. The proposed model achieved the highest possible accuracy of 99.69%, sensitivity of 1.0, where AUC was 0.9995. Furthermore, the reported false positive rate was only 0.0015 for 5856 COVID-19-negative cases. Our results stated that the proposed CNN could possibly be used for mass screening. Using the exact same set of CXR collection, the current results were better than other deep learning models and major state-of-the-art works.

摘要

在放射成像数据中,胸部X光(CXR)在观察新冠病毒疾病(COVID-19)表现方面有很大用途。对于大规模筛查,使用胸部X光时,一个计算效率高的人工智能驱动工具是从非新冠病例中检测出新冠病毒阳性病例的必备手段。为此,我们提出了一种轻量级的定制卷积神经网络(CNN)浅层架构,它可以使用胸部X光自动检测新冠病毒阳性病例,且无假阴性。与其他深度学习模型相比,定制的浅层CNN架构设计的参数更少。该定制的浅层CNN架构使用321例新冠病毒阳性胸部X光进行了验证。除了新冠病毒阳性病例外,还考虑了另一组5856例非新冠病毒病例(公开可用,来源:Kaggle),包括正常、病毒和细菌性肺炎病例。在我们的实验测试中,为避免可能的偏差,采用了5折交叉验证,并使用了平衡和不平衡数据集。所提出的模型实现了最高可达99.69%的准确率、1.0的灵敏度,曲线下面积(AUC)为0.9995。此外,对于5856例新冠病毒阴性病例,报告的假阳性率仅为0.0015。我们的结果表明,所提出的CNN可能可用于大规模筛查。使用完全相同的胸部X光数据集,当前结果优于其他深度学习模型和主要的最先进研究成果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c18d/7863062/934ebdcb6142/12559_2020_9775_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验