Muzammil Shah Rukh, Maqsood Sarmad, Haider Shahab, Damaševičius Robertas
Department of Computer Science, City University of Science and Information Technology, Peshawar 25000, Pakistan.
Department of Software Engineering, Kaunas University of Technology, Kaunas 51368, Lithuania.
Diagnostics (Basel). 2020 Nov 5;10(11):904. doi: 10.3390/diagnostics10110904.
Technology-assisted clinical diagnosis has gained tremendous importance in modern day healthcare systems. To this end, multimodal medical image fusion has gained great attention from the research community. There are several fusion algorithms that merge Computed Tomography (CT) and Magnetic Resonance Images (MRI) to extract detailed information, which is used to enhance clinical diagnosis. However, these algorithms exhibit several limitations, such as blurred edges during decomposition, excessive information loss that gives rise to false structural artifacts, and high spatial distortion due to inadequate contrast. To resolve these issues, this paper proposes a novel algorithm, namely Convolutional Sparse Image Decomposition (CSID), that fuses CT and MR images. CSID uses contrast stretching and the spatial gradient method to identify edges in source images and employs cartoon-texture decomposition, which creates an overcomplete dictionary. Moreover, this work proposes a modified convolutional sparse coding method and employs improved decision maps and the fusion rule to obtain the final fused image. Simulation results using six datasets of multimodal images demonstrate that CSID achieves superior performance, in terms of visual quality and enriched information extraction, in comparison with eminent image fusion algorithms.
在现代医疗系统中,技术辅助临床诊断已变得极为重要。为此,多模态医学图像融合受到了研究界的高度关注。有多种融合算法可将计算机断层扫描(CT)和磁共振图像(MRI)合并,以提取详细信息,用于加强临床诊断。然而,这些算法存在若干局限性,例如分解过程中边缘模糊、过度的信息丢失导致虚假结构伪影,以及由于对比度不足而产生的高空间失真。为解决这些问题,本文提出了一种新颖的算法,即卷积稀疏图像分解(CSID),用于融合CT和MR图像。CSID使用对比度拉伸和空间梯度方法来识别源图像中的边缘,并采用卡通纹理分解,创建一个超完备字典。此外,这项工作提出了一种改进的卷积稀疏编码方法,并采用改进的决策图和融合规则来获得最终的融合图像。使用六个多模态图像数据集的模拟结果表明,与著名的图像融合算法相比,CSID在视觉质量和丰富信息提取方面具有卓越的性能。